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The paper studies a initial-boundary value problem for a class of second order 

degenerate pseudohyperbolic equations.  
We prove the existence and uniqueness of the problem in the appropriately 

constructed functional space. 
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Introduction. We consider the following initial-boundary value problem of 
Sobolev type 
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where * , LΓ ⊂ Γ = ∂Ω  and M are differential operators to be perused later. 
We are interested the case, when the elliptic operator L  can be degeneration 

the part of the initial hyperplane.  
We treat this problem with the help of construction of the corresponding 

functional space and by establishing its equivalence to the Cauchy problem for 
some operator equation.  

This problem was considered for the first time by Sobolev, in connection 
with the study of small oscillations of a rotating ideal fluid, in the particular case 
when L = Δ  is the three-dimensional Laplace operator. Later similar problems were 
considered by R.A. Aleksandryan [1], S.A. Galpern [2] and others (see, e.g.,[3–5]). 

1. Let Ω  be a bounded domain in n -dimensional vector space nR  located in 
the half-space 0nx > . We suppose that the boundary of the domain has the form   
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1 0 ,∂Ω = Γ ∪Γ  where 0 { 0}nxΓ = ∂Ω∩ =  is a domain in the hyperplane { 0}nx = , 

1 0\Γ = ∂Ω Γ , and for the domain Ω  the Sobolev embedding theorems are valid. 
We consider the following initial-boundary value problem in the cylinder 

Q R+= Ω×  for the degenerate pseudohyperbolic equation 
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We assume that the coefficients of the operators L  and M are symmetric: 
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*Γ  is a part of the boundary, which depending on the order of degeneracy 
β , represents either the whole boundary ∂Ω  or coincides  with the 1.Γ  

2. In the space 2 ( )L Ω  we define the operator Lβ  with the domain of 

definition 0 ( )C∞ Ω  by the formula 
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It follows from the results of [5], that the operator Lβ  is symmetric and 
positive-definite. Define the Hilbert space LH

β
 as the completion of the linear 

manifold 0 ( )C∞ Ω in the metric generated by the following scalar product 
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Let 0T > , (0, )Q T= Ω×  be a cylinder with the base Ω , (0, )TΣ = Γ×  be the 
lateral boundary of the cylinder Q .  
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Definition. Twice differentiable in LH
β
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Theo r em .  For any initial values (0)
Lu H
β

∈ and (1)
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unique generalized solution of the problem (1)–(3) in .LH
β

 Where for the case 

1β <  we have *Γ = ∂Ω  and *
1 0\Γ = Γ = ∂Ω Γ  for 1.β ≥  

Proof. Let 0 [0, )t ∈ ∞  be a fixed number. In the space 2 ( )L Ω  we define the 
operator 0( )L t  with the domain of definition 0 ( )C∞ Ω  by the formula 
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we conclude that the operator 0( )L t  is symmetric. It is easy to verify that the 
operator 0( )L t  is positive-definite in 2 ( )L Ω . Мoreover, since the quadratic form 
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and Cβ , such that for every 0 ( )v C∞∈ Ω  we have 
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On the linear manifold 0 ( )C∞ Ω  we define the operator 0( )A t  by the formula  
1
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where 0( )L t is the Friedrich’s extension of 0( )L t . It is easy to check that 0( )A t  is 

bounded in the space LH
β

. Indeed, let 1 2 0( ), ( ) ( )v x v x C∞∈ Ω  are arbitrary functions. 
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i.e., the operator 0( )A t  is bounded in the space 
0( )A tH . From the inequality (5) we 

deduce that  0( )A t is bounded in the space LH
β

. 

We extend the operator 0( )A t  by continuity from the linear manifold  

0 ( )C∞ Ω  to the whole space LH
β

. The extension will be denoted by 0( )A t . In the 

Hilbert space LH
β

 we consider the following auxiliary Cauchy problem 
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It is easy to see, that every solution of the problem (7) is a weak solution for the 
problem (1)–(3) and vice-versa. The boundedness of the operator ( )A t  in the space 

LH
β

implies that the problem (7) has a unique solution in LH
β

.  
Thus, the Theorem is proved. 
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