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In the present work it is shown that the set { }0
2 0 1Ni

i i
i

D δ δ
∞

=
= ∑ : = ,  for every 

sequence 0 1 iN N … N …< < < <  of natural numbers can be changed into the set of 
the form { ( ( )) }k o k k DωΛ = + : ∈ , where ( )kω  is an arbitrary, tending to infinity 
at k →+∞  sequence, such that Λ  is the spectrum of universality for Walsh 
system. 
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Introduction.  Let S  be a space of functions defined on [0 1],  (for example, 
[0 1]pS L= , ) and let T  be a type of convergence (for example, the convergence in 

[0 1]pL ,  metric or the almost everywhere convergence). Here we will mainly 
consider 0[0 1]S L= ,  – the class of all almost everywhere finite, measurable 
functions and T =  almost everywhere convergence on [0 1], .  

A series  

                                                       
1

( )k k
k

a xϕ
∞

=
∑                                                         (1) 

is said to be universal in the usual sense for ,S  T,  if for any function ( )f x S∈  
there exists an increasing sequence of natural numbers kn , such that the corres-

ponding sequence of partial sums 
1

( )
kn

j j
j

a xϕ
=
∑  converges to ( )f x  in the sense of T .  

There are also other types of universality such as universality with respect to 
rearrangements for :S  T,  the latter means that for any function ( )f x S∈  there 

exists rearrangement ( )k kσ  such that the series ( ) ( )
1

( )k k
k

a xσ σϕ
∞

=
∑  converges to 

( )f x  in the sense of  T .  
We will also say that the series (1) is universal in the sense of partial series 
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for , ,S  T  if for any function ( )f x S∈  there exists a partial series  
1

( )
k kn n

k
a xϕ

∞

=
∑  of 

(1), which converges to ( )f x  in the sense of  T .  
The first example of trigonometric series universal in the usual sense for the 

class of all measurable functions has been constructed by D.E. Menshoff [1] (see 
also [2]). This result was extended by A.A. Talalian [3] to arbitrary complete ortho-
normal systems. He also established [4], that if 1{ ( )} , [0 1],n nx xϕ ∞

= ∈ ,  is an arbitrary 

orthonormal system, then there exist a series ( ),k ka xϕ∑  which is universal in the 
sense of partial series for the class of all measurable functions and T =convergence 
in measure on [0,1]. The following general result was obtained by M. Grigorian [5]:  

T h e o r e m .  The class of orthogonal series simultaneously possessing the 
following properties 1),  2) are not empty:  

1) universality with respect to rearrangements and in the sense of partial 
series both in each [0,1]pL , [ )1 2 ,p∈ ,  and in 

1 2
[0 1];p

p
L

≤ <
,∩  

2) universality with respect to rearrangements and in the sense of partial series 
for S =all measurable functions and T =almost everywhere convergence on [0,1]. 

The fact that there exists a functional series universal with respect to 
rearrangements for S =class of almost everywhere finite, measurable functions and 
T =almost everywhere convergence, was mentioned by W. Orlicz [6]. Note that 
Riemann has proved (see [7], p. 317) that every unconditionally convergent 
numerical series is universal with respect to rearrangements for S = all reals.  

Definition. The set of natural numbers Λ , for which it is possible to 
construct an universal (in some sense) series ( )

k
k

ka xλ
λ

ϕ
∈Λ
∑ , we will call the 

spectrum of universality (in the same sense).  
In the rest of the paper we will consider universal series in Walsh system.  
Let ( )kω  be an arbitrary sequence, tending to infinity as k →+∞ . By the 

small change of some set D  we will mean the set { ( ( )) }k o k k Dω+ : ∈ .  
Such small transformations of sets were considered for the first time by      

G. Kozma and A. Olevskii [8], with the aim to transform these sets into represen-
tation spectrum. More precisely, it was proved by them for trigonometric system 
that for any sequence ( )w k  tending to infinity there is a symmetric representation 

spectrum { }2 ( ( ))
k N

k o w k
∈

Λ = ± + ,  i.e. each measurable function f  allows the 

representation  ( ) ( ) ,inx
n

n
f x c f e

∈Λ
= ∑  where the sum converges almost everywhere.  

This result was extended to the Walsh system by the author in  [9], namely:  
T h e o r e m .  For arbitrary 0{2 }k

kl ∞
=∈  there exists a subsystem 1{ }

kn kw ∞
= , 

1{ ( )}l l
k k Nn k o k −

∈∈ +  of Walsh system such that for every measurable function there 

exists a series by subsystem 1{ }
kn kw ∞

=  converging a.e. to this function. In other words, 

there exists a representation spectrum of the form { }1( ) ,l l
l k N

k o k −

∈
Λ = +  0{2 } .k

kl ∞
=∈  
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T h e o r e m .  For arbitrary sequence 1{ ( )}kkω ∞
= , tending to infinity, there 

exists a subsystem 1{ }
kn kw ∞

= , 2{ ( ( ))} ,k k Nn k o kω ∈∈ +  of Walsh system such that for 

arbitrary measurable function there exists a series by subsystem 1{ }
kn kw ∞

=  
converging a.e. to this function, i.e. there exists a representation spectrum 

{ }2 ( ( ))
k N

k o kω
∈

Λ = +  (the notation 2{ ( ( ))}k Nk o kω ∈+  means that we can find a 

sequence 0kα →  such that 2{ ( ))}k k Nk kα ω ∈+ ⋅  is a representations spectrum). 
Let us consider the set of natural numbers in binary representation: 

0
2 0 1i

i i
i

N δ δ
∞

=

⎧ ⎫= ∑ : = , .⎨ ⎬
⎩ ⎭

 After substituting all indexes i  in the exponents by iN  

(for a given sequence 0 1 iN N …N …< < < ) we will get the set 

0
2 0,1 ,iN

i i
i

D δ δ
∞

=

⎧ ⎫= ∑ : =⎨ ⎬
⎩ ⎭

 which, as it can be easily seen, cannot be a universality 

spectrum in general. However, for any sequence ( ),kω  tending to infinity, by 
small change of D  it can be transformed into a spectrum of universality for the 
Walsh system. The main result of the present work is the following  

T h e o r e m .  For any sequence of nonnegative integers 0 1 iN N … N …< < < <  

and arbitrary sequence ( ),kω  tending to infinity, the set 
0

2 0,1iN
i i

i
D δ δ

∞

=

⎧ ⎫= ∑ : =⎨ ⎬
⎩ ⎭

 

can be transformed into the set { ( ( )) }k o k k DωΛ = + : ∈ = 1{ }n nλ ∞
=  by small change 

such that Λ  is a universality spectrum (in 0[0 1]S L= ,  and in the sense of 
T =convergence almost everywhere ) for Walsh system, i.e. there exists a series 

1
( )

kk
k

a w xλ

∞

=
∑  with 0ia → , such that for arbitrary function 0[0,1]f L∈  there is a 

sequence of natural numbers { }kν  such that 
1

lim ( ) ( )
k

iik i
a w x f x

ν

λ→∞ =
=∑  almost every-

where on [0 1], .  
Definitions, Notations and Some Properties. Let us recall the definition of 

Walsh system { } 0( )k kw t ∞

=
 in the Paley ordering [10, 11]:  

0 1
1, [0, 1/ 2),

( ) 1, ( )
1, [1/ 2, 1],

t
w t w t

t
∈⎧

= = ⎨− ∈⎩
            12 ( ) (2 ),k

kw t w t=  

and for natural q  with binary representation 
0

2i
i

i
q q

∞

=
= ∑ , where 0iq =  or 1iq = , 

we define  ( )2
0

( ) ( ) i
i

q
q

i
w t w t

∞

=
= .∏  Using this definition, it is easy to check the 

following properties, which we will use later in the text:  
1) for every natural number q  we have 2(2 ) ( )k

k
q qw t w t

⋅
= ;  

2) if natural numbers p  and q  have nonintersecting binary representation 
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(see definition below), then ( ) ( ) ( )p q p qw t w t w t+=  (the property of index addition).  

Let 02 2 ki ip = + +  and 02 2 nj jq = + +  be some natural numbers. We 
will say that binary representations of numbers p  and q  do not intersect, if 

0 0{ , , } { , , } .k ni … i j … j∩ =∅  

Let [ ]( ) 0,1f t L∈  and 
1

0

ˆ ( ) ( ) ( )kf k f t w t dt= ∫  be its Fourier–Walsh 

coefficient. Then for each polynomial ( )P t  in Walsh system we have:  
                                                  

0

ˆ( ) ( ) ( );k
k

P t P k w t
≥

= ∑                                             (*) 

1. 
0

ˆ( ) ( )
m

m k
k

P P k w
=

= ∑ ;  

2. spec{ }P  represents the set of those nonnegative integers k , for which 

kw  appears in the representation (*);  
3. deg{ }P  is the maximal element of spec{ }P ; 
4. 1

spec{ }

ˆ ˆ|| || ( ) ||
k P

P P k
∈

= ∑ .  

The Construction of the Spectrum of Universality. For the given sequence 
0 1{ , , , , }kN N N … N …=  of increasing nonnegative integers we define the following sets:  

( , ) ( , )

0
( , ) 2 0,1;

i n
k

n
N i n

k k k
k

S i n N Nδ δ
=

⎧ ⎫= : = ∈⎨ ⎬
⎩ ⎭
∑   and  ( )

0
( , )

n

n
i

B i S i n
=

= +∪ , 

where ( , )i n
kN  are chosen such that the following conditions are satisfied: 

1. 1
(min{ ( , )})

n
S i n nω

<   for  all 0 i n≤ ≤ ;  

2. max{ ( 1, )} min{ ( , )}, 1 ;S i n S i n i n− < ≤ ≤   
3. 1max{ } min{ }n nB B− < .  
Then, for sufficiently large n , we have { ( ( )) : }.nB k o k k Dω= + ∈  Note that 

( )
0 0

( , )
n

n i
S S i n D

∞

= =
= ⊂∪ ∪  and small change of it a subset D  is specified. Other 

elements of D  will be changed by 0, which is also a special case of small change. 

Thus,  1
0

{ ( ( )) } { } { ( ( )) } .n m m m n n
n

B k o k k D k o k k Dω λ ω
∞

∞
=

=
′Λ = = + : ∈ = ⊂ + : ∈ = Λ∪  

We will prove that ′Λ  is a universality spectrum, which means that Λ  is a 
universality spectrum too.  To prove that ′Λ  is a universality spectrum, it is enough 
to prove the following lemma.  

M a i n  L e m m a .  For every 0[0,1]f L∈  and for arbitrary 0, 0ε δ> >  and 

0k N∈  there exists a polynomial ( )P x  in Walsh system such that: 

1. 
0

( ) ( );
k

k

k
k k

P x a w xλ
=

= ∑   

2. ;kλ ∈Λ   
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3. ;ka δ| |<   
4. { }mes ( ) ( )f x P x δ ε| − |> < .   
Proof of the Main Lemma. First we need to prove the following lemma.  
L e m m a .  For any | | 1, 0 1, 0a   y  α< < < > and any iN ∈  with 

0 1 1kN N … N −< < <   there  exists  a  polynomial 
2 1

1

ˆ( ) ( ) ( )
k

i
i

W t W i tw
−

=
= ∑   such  that:  

1. { 1 ( ) } km t W t y y cα−: − ≥ < ;  

2. ˆ ( )W i a≤ ,  

where (1 ) (1 ) 1
2

a ac
α α+− += <  and 0 1

0 12 2( ) ( )N Nk
k

i q qt w tw −
−+ +

=  for 

0 1
0 12 2 ,k

ki q q −
−= + +    0,1,jq =    0 1j k≤ ≤ − . 

In the rest of the paper to emphasize that the polynomial ( )W t  in the Lemma 
depends on numbers 0 1 1, , , kN N … N − , we will denote 0 1( ) ( ){ , , }kW t W t N … N −= .  

Proof. For the natural numbers 0 1 1kN N … N −< < <  we denote 

( )1
11 2

( ) 2 ( )m
Nm

N
m t a w t a w tϕ −

−= ⋅ = ⋅  with 1a < , then k aϕ =  on the first half of 

each interval 
1 1

( ) 1 ,
2 2k k

k
i N N

i i
− −

−⎡ ⎤Δ = ⎢ ⎥⎣ ⎦
, 11 2 kNi −≤ ≤ , and k aϕ = −  on the second half. 

Now for 1α <  we have    

( ) ( )

( )| |(1 ( )) ( )(1 ) (1 )
2k k

i i

k
i

k t dt c dta aα α αϕ
Δ Δ

Δ
− = + = ,− +∫ ∫  

where we denote  (1 ) 1 1(1 ) 1.
2 2

a a aac
αα α+ + − + +− ⎛ ⎞= < =⎜ ⎟

⎝ ⎠
 

It is easy to see that jϕ , for 0 1j k≤ < − , are constant on each of ( ) ,k
iΔ  

11 2 kNi −≤ ≤ .  Let  us  prove that 
1

1
0

1 ( ) (1 ( ))( ) n
nt … t dt cααϕ ϕ− − = .∫  

For 1n =  it is obvious. Let us assume that the statement is true for 2n k= −  
and  prove  it  for  1n k= − . We  have  

( ) ( ) ( ) ( ) ( )

( ) ( ) ( )

1

( )

1

( )

1 2

1 1 1 2 1
10

2

1 2 1
1

1 ( ) 1 ( ) 1 ( ) 1 ( ) 1 ( )

,1 ( ) 1 ( ) 1 ( )

Nk

k
i

Nk

k
i

k k k
i

i k i k
i

… dt … dtt t t t t

… dtt t t

α α αα α

α α α

ϕ ϕ ϕ ϕ ϕ

ϕ ϕ ϕ

−

−

− − −
= Δ

− −
= Δ

= =− − − − −

= − − −

∑∫ ∫

∑ ∫

 

where ( )k
i it ∈Δ . Then  

1

( )

1 2

1 1 21
10

1
1

1 1
0

(1 ( )) (1 ( )) (1 ( ))(1 ( ))

1 ( ) (1 ( ))( )

Nk

k
i

k i k i
i

k k
k

… t dt c t … t dtt

c t … t dt c c c

α α αα

α α

ϕ ϕ ϕϕ

ϕ ϕ

−

− −
= Δ

−
−

− = ⋅ − − =−

= ⋅ − − = ⋅ =

∑∫ ∫

∫

. 
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Now we present the product ( ) ( )01 ( ) 1 ( )kt tϕ ϕ− −  in the form of the sum: 

( )( ) ( )( )0 1
2 1

1 1
0

ˆ1 2 1 2 ( ) ( )
k

kN N
i

i
a w t … a w t w i tw−

−

=
− − = ∑ , 

where for each 0 1
12 2k

ki q q −= + + , 0,1jq =  we denote 

0 1
0 12 2( ) ( )N Nk

k
i q qt w tw −

−+ +
= . It is easy to see that ˆ (0) 1w =  and ˆ ( )w i a≤  for 

0 2ki< < . Thus, for nonintersecting m  and n  we have m n m nw w w +⋅ = . By 

denoting 
2 1

1
ˆ( ) ( ) ( )

k

i
i

W t w i tw
−

=
= −∑ , we have 

1

0
1 ( ) kW t dt cα− <∫  and, therefore, 

{ }
1

0
1 ( ) 1 ( ) km t W t y y W t dt y cαα α− −: − ≥ ≤ − < ⋅∫ .  

The second statement of the Lemma is obvious from the construction of the 
polynomial. 

The Lemma is proved.  
Proof of the Main Lemma. Let us approximate the function f  by 

polynomial 1P  so that 1{ | | / 2} / 2m t P f δ ε: − > < .  We take a  such that 0 a δ< < ,                

n  such that  ( ) 1 1
1

ˆ2
deg 1

2
nPP c

αα

α
ε

δ
+ <   and  take 

11ˆ2 || ||
y

P

δ
= . 

We define the polynomial 
1deg

1
0

ˆ( ) ( ) ( ) ( )
P

k k
k

P t k w t W tP
=

= ∑ , where the 

polynomials ( ) ( )
1( ) ( ) , ,k k

k nW t W t N … N⎧ ⎫
⎨ ⎬
⎩ ⎭

=  are chosen according to the Lemma, and 

the numbers  ( )i
kN  are to be chosen later. 

Now we put 1max{deg , }M P n= . For all m M≥  we can choose the 
numbers  ( )i

kN  from the set of numbers  ( , )i m
kN  such that spec{ } mP B⊂  for all 

m M≥  and, therefore, 1spec{ } { }k kP λ ∞
=⊂ . Hence, we can choose numbers  ( )i

kN  
such that 0min{spec{ }}P k>  for any given 0k . So the first and second statements 
of  the Main Lemma are  satisfied. 

We have the following estimates: ( )
1deg

1 1
0

ˆ ( ) ( ) ( ) 1 ,
P

k k
k

P P k w t W tP
=

− = −∑  

( )
1 1 1deg deg deg

1 1 1 1
0 0 0

ˆ ˆ ˆ( ) ( ) ( ) 1 ( )
P P P

k
k k k

m t P P k y m t k W t k yP P P
= = =

⎧ ⎫ ⎧ ⎫
: − ≥ ≤ : − ≥ ≤⎨ ⎬ ⎨ ⎬

⎩ ⎭ ⎩ ⎭
∑ ∑ ∑  

( ){ } { } ( )
1 1deg deg

11 1
0 0

ˆ ˆ( ) ( ) 1 ( ) ( ) 1 deg 1 .
P P

n
k k

k k
m t k W t k y m t W t y P y cP P

α−

= =
≤ : − ≥ = : − ≥ ≤ +∑ ∑

Then    { }1 1 1 11 1ˆ ˆ{ | | / 2 || || } | | | | / 2 || ||m t P f y m t P P P f yP Pδ δ: − > + ≤ : − + − > + ≤   

       1 1 1 11ˆ{ | | || || } { | | / 2} (deg 1) / 2nm t P P y m t P f P y cP
αδ ε ε−≤ : − > + : − > < + + < . 

So, we have  { | | }m t P f δ ε: − > < . 
The Main Lemma is proved.  
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Proof of the Theorem. 

T h e o r e m .  There exists a series 
1

( )
kk

k
c w xλ

∞

=
∑  with 0kc → , which is 

universal  in  the usual sense for 0[0 1]L , .  
Proof. We denote by 1{ ( )}n nf x ∞

=  the sequence of polynomials with rational 
coefficients and, applying successively the Main Lemma, we can choose a 
sequence of polynomials ( )jQ x  in subsystem of the Walsh system  

1

1

( ) ( ),
j

i
j

m

j i
i m

Q x a w xλ
−

−

=
= ∑  satisfying the following conditions:  

1. 
1

{ ( ) ( ) 2 } 1 2
k

k k
k j

j
m x f x Q x − −

=
:| − |< > −∑ ;  

2. | | 2 ,j
ia −<  for all 1[ , )j ji m m−∈ .  

Let 0( ) [0 1]f x L∈ , . Let us choose a subsequence of polynomials { }
m

fν  such that 
2{ ( ) ( ) 2 } 1 2

k

k km f x f xν
− −| − |< > − . Let { }2( ) ( ) 2

k

k
kB x f x f xν

−= :| − |< , 

1
( ) 2

k
k

kk j
j

E x f Q x
ν

ν
ν

−

=

⎧ ⎫
= :| − |<⎨ ⎬
⎩ ⎭

∑  and, finally, ( )
1

.k k
n k n

E E B
∞ ∞

= =
= ∩∪ ∩  Obviously, 

| | 1E = . Then  
1

1

1
( ) ( ) 2

jk

i
j

m
k

i
j i m

f x a w x
ν

λ
−

−
−

= =

⎛ ⎞
− <⎜ ⎟⎜ ⎟

⎝ ⎠
∑ ∑  for  all k kx E B∈ ∩ . 

This means that 
1

lim ( ) ( )
k

iik i
a w x f x

ν

λ→∞ =
=∑  on E , i.e. 

1
( )

ii
i

a w xλ

∞

=
∑  is universal in the 

usual  sense  for 0[0 1]L ,   and  0ia → . 

The author is grateful to prof. M. Grigoryan for useful remarks and 
discussions. 
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