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In this paper a few new types of random contraction and dilation schemes are 
considered. In particular, four one-sided additive schemes and two two-sided 
additive schemes are represented. All schemes has been built for sample extremes 
and exponential random variables.  Characterizations of distributions for all those 
schemes are obtained.   
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Introduction. Equality by distribution of the form 
d

X YU= , where U  is a 
random variable, whose distribution is concentrated on  (0,1)  (mostly power 
distribution or standard uniform), X  and Y  are arbitrary random variables, are 
called random contraction scheme. On the other hand, equality of the form 

d
X YW= , where W  is a random variable, whose distribution is concentrated on 
(1, ),∞  is called random dilation scheme. When considering such schemes a 
question arises to describe those distributions under which the above equations 
holds. One can use such schemes to switch between differently distributed random 
variables. The discussion on this topic can be found in [1–4]. During the past few 
years similar equations have been considered for order statistics (see [5–7]) and 
mathematical records (see [8]).    

In this paper we will discuss several types of special random contraction and 
dilation schemes constructed for extremal order statistics, in particular for sample 
extremes. We will also introduce two-sided schemes, where we have contraction 
on the one side and dilation on the other side. 

Characterizations of Distributions Via Random Dilation Schemes. Con-
sider a sequence of independent, identically distributed (i.i.d.) random variables 

1 2, , ,...Y Y Y  with common distribution function (d.f.) ( )F x . Let W  be another 
random variable independent of 1 2, , ,...Y Y Y  with standard exponential distribution 

( ) max{0,1 }x
WF x e−= − . For some fixed 1,2,...k =  and 2,3,...n =  let us take 
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sample minimums 1, 1min{ ,..., }k kY Y Y= , 1, 1min{ ,..., }n nY Y Y= . Without loss of 
generality we can assume that k n<  and, hence, 1, 1,n kY Y< .  

Consider the following dilation scheme for introduced quantities 

                                                            1, 1,

d

k nY Y W= + .                                              (1)      

T h e o r e m  1 .  For some fixed 1 k n≤ <   equality by distribution (1) holds, iff  

                                         ( )
1

( ) 1 1
k n k n

kC xF x e
− −

−⎡ ⎤= − +⎢ ⎥⎣ ⎦
, x−∞ < < ∞ ,                     (2) 

where C  is an arbitrary constant. 
Remark. We define the inverse function of d.f. ( )F x  as 

( ) inf{ : ( ) }G s x F x s= ≥ , so, the continuity of ( )F x  is enough for existence of the 
inverse function. 

Proof of Theorem 1. Using the principle of convolution, we can rewrite (1) as  

                                           1, 1,
0

( ) ( ) ( )k n WF x F x u f u du
∞

= −∫ ,                         (3) 

where 1,kF  and 1,nF  are d.f.-s of 1,kY  and 1,nY  respectively, and Wf  is the pro-
bability density function of .W  Making change of variable x u t− =  in (3), we get  

                                               1, 1,( ) ( )
x

x t
k nF x e F t e dt−

−∞

= ∫ .                                      (4) 

Taking into account that 1, ( ) 1 (1 ( ))k
kF x F x= − −  and 1, ( ) 1 (1 ( ))n

nF x F x= − −  (see, 
for example [9]), we can rewrite (4) as follow 

                                1 (1 ( )) 1 (1 ( ))
x

k x n tF x e F t e dt
−∞

⎡ ⎤ ⎡ ⎤− − = − −⎣ ⎦ ⎣ ⎦∫ .                         (5) 

Note, that equality (5) and continuity of ( )F x  ensures the differentiability of 
( )F x . So, differentiating both sides of (5), we obtain the following equality  

( ) ( )1(1 ( )) ( ) 1 (1 ( )) 1 (1 ( ))x k x k n xe k F x F x e F x F x e− ′− + − − = − − , 

consequently, 
                                      ( )( )( ) 1 ( ) 1 (1 ( ))n kkF x F x F x −′ = − − − .                             (6) 

As ( ( ))F G x x= , so, 1( ( ))
( )

F G x
G x

′ =
′

. Hence, substituting ( )G x  instead of x  in 

(6), we get  
( )

( )
(1 ) 1 (1 )n k

kG x
x x −

′ =
− − −

, 0 1x< < . Integration of both sides of the 

last equality yields  

( ) ( )1 1( ) (1 ) ln(1 ) ln 1 (1 ) ,
(1 ) 1 (1 )

n k
n k

G x k d x k x x C
k nx x

−
−

⎛ ⎞= − − = − − + − − +⎜ ⎟−⎝ ⎠− − −
∫  

where C  is an arbitrary constant. Thus for function ( )G x , 0 1x< < ,  we  obtain  
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                                             (1 )( ) ln
(1 (1 ) )

k
k n

k C

n k

x eG x
x −

−

−

−
=

− −
.                                      (7) 

Note that since 0k n− < , from (7) it follows that (0 )G + = −∞ , (1 )G − = ∞ , viz the 
support of initial d.f. ( )F x  is ( , )−∞ ∞ . Returning to d.f. ( )F x , we can rewrite (7) 

as (1 ( ))ln
(1 (1 ( )) )

k
k n

k C

n k

F x ex
F x −

−

−

−
=

− −
, thus (1 (1 ( )) )

(1 ( ))

k
k nn k

C x
k

F x e
F x

−−
−

−

− −
=

−
 and finally 

1(1 ( )) ( ) 1 1
k n k n

k k xk n C xF x e C e
− −−− −− = + = + , where 1C  is an arbitrary positive 

constant. So, we have proved the first part of the Theorem. To prove the second 
part, one can just substitute d.f. (2) into the equality for distributions (3). 

Theorem 1 provides a similar result for sample maximums. Consider a new 
sequence of random variables, constructed in the following manner 

1 1 2 2, , ,...X Y X Y X Y= − = − = − . It is obvious, that 1 2, , ,...X X X  will be i.i.d. 
with common continuous d.f. ( ) 1 ( )H x F x= − − , x−∞ < < ∞ . Also, one can easily 
obtain that for some 1,2,...m =  ,m mX  and 1,mY−  have the same distribution. Indeed, 

,{ } ( ) (1 ( ))m m
m mX x H x F xΡ < = = − −  (see, for example, [9]). On the other hand, 

1, 1,{ } 1 { } (1 ( ))m
m mY x Y x F xΡ Ρ− < = − < − = − − . Further, by changing the sign in 

equation (1), we get 1, 1,

d

k nY Y W− =− −  which is the same as , ,

d

k k n nX X W= − which, in 
turn, is a random contraction scheme. Hence, we formulate the following corollary. 

Corollary 1. Equality by distribution , ,

d

k k n nX X W= −  holds, iff 
1

( ) (( ) 1)
k n

k k nxH x Ce
−

−= +  for all x−∞ < < ∞  with k n<  and arbitrary positive 
constant C . 

To prove the sufficiency of Corollary 1, one just need to substitute (2) in the 
expression of d.f. ( )H x . 

Random Contraction Schemes. Here we keep all definitions and notations 
from the previous section. For the same sequence 1 2, , ,...Y Y Y  of i.i.d. random 
variables and ,W  consider an equality by distribution  

                                                          1, 1,

d

k nY W Y− = .                                                (8) 
T h e o r e m  2 .  The equality by distribution (8) for some fixed 1 k n≤ <  

holds, iff the d.f. ( )F x , x C−∞ < < ,  is given by  

                                                
1

( ) 1 1 ( )
n k n k

nx CF x e
− −−⎡ ⎤= − −⎣ ⎦ ,                         (9) 

where C  is some constant. 
Proof. As 1, ( ) 1 (1 ( ))n

nF x F x= − −  and 1, ( ) 1 (1 ( ))k
kF x F x= − − , so, we can 

rewrite (8) in the following form 
0

1 (1 ( )) 1 (1 ( )) ( )n k
WF x F x u f u du

∞
⎡ ⎤− − = − − +⎣ ⎦∫ , 

and, by denoting x u t+ = , we get   
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                                   1 (1 ( )) 1 (1 ( ))x n k t

x
e F x F t e dt

∞
− −⎡ ⎤ ⎡ ⎤− − = − −⎣ ⎦ ⎣ ⎦∫ .          (10) 

Since ( )F x  is a differentiable function, we can differentiate both sides of 

(10) to obtain 1 (1 ( )) 1 (1 ( )) 1 (1 ( ))n n kF x F x F x′⎡ ⎤ ⎡ ⎤ ⎡ ⎤− − = − − − − −⎣ ⎦ ⎣ ⎦ ⎣ ⎦ , from which 

we get 1
(1 ( )) (1 ( ))( )

(1 ( ))

k n

n
F x F xF x
n F x −

− − −′ =
−

. Switching to the inverse function 

1( ) ( )G x F x−=  and taking into account that 1( ( ))
( )

F G x
G x

′ =
′

, we obtain 

( )
(1 )((1 ) 1)k n

nG x
x x −

′ =
− − −

 for 0 1x< < . Integrating both sides of last equation, 

we get following representation for inverse function  

                                              ( ) ln 1 (1 )
n

n kn kG x x C−−⎡ ⎤= − − +⎣ ⎦ ,                       (11) 

where C  is an arbitrary constant. It is easily seen, that the equality (11) can be 
written in following manner  

ln 1 (1 ( ))
n

n kn kx F x C−−⎡ ⎤= − − +⎣ ⎦ , 

which can be easily transformed to (9).  
Similarly to the previous scheme, we can formulate a corollary from 

Theorem 2 for random dilation scheme , ,

d

k k n nX W X+ = . 

Corollary 2. Equality by distribution , ,

d

k k n nX W X+ =  holds for some fixed 

1 k n≤ < , iff ( )
1

( ) 1
n k n k

nx CH x e
− −

− −⎡ ⎤= −⎢ ⎥⎣ ⎦
, C x< < ∞ , where C  is an arbitrary 

constant.  
Some Generalizations of the Proven Results. First we want to take more 

general random variable instead of W . Let Wα  be an exponential random variable, 

independent of 1 2, , ,...Y Y Y  with a density function ( ) x
Wf x e
α

αα −= . Then the 
following is true. 

T h e o r e m  3 . Equality by distribution 1, 1,

d

k nY Y Wα= +  for some fixed 
1 k n≤ <  and 0α >  holds, iff  the d.f. ( )F x  is given by  

1
( )( ) 1 ( ) 1

k n k n
kC xF x eα
− −−⎡ ⎤= − +⎣ ⎦ , x−∞ < < ∞ , 

where C  is some constant. 
Proof of this Theorem is similar to the proof of Theorem 1, the only 

difference is the α  parameter appearing in expressions. Moreover, we can 
similarly formulate analogous result for the scheme given in Theorem 2. 

The second type of generalization is the consideration of two-sided random 
contraction/dilation scheme. Keeping the notations, for some positive α  and β  
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consider the following equality 1, 1,

d

k nY W Y Wα β− = + . Rewriting this equality in 
terms of convolution of distributions, we get  

1, 1,
0 0

( ) ( ) ( ) ( )k W n WF x u f u du F x u f u du
α β

∞ ∞

+ = −∫ ∫ . 

Considering that ( ) x
Wf x e
α

αα −= , ( ) x
Wf x e

β

ββ −=  and making change of variable 

x u t+ =  and x u t− =  respectively on the left and right sides of the last equality, 

we obtain ( )
1, 1,( ) ( )

x
x t t

k n
x

e F t e dt F t e dtα β α βα
β

∞
+ −

−∞

=∫ ∫ . Differentiation of both sides 

leads to  
( ) ( )

1, 1, 1,( ) ( ) ( ) ( )x t x x x
k k n

x
e F t e dt e F x e F x eα β α α β α βα αα β

β β

∞
+ − + −+ − =∫ , 

and so we have  

1, 1, 1,
1( ) ( ) ( )

( )
t x x

k n k
x

F t e dt F x e F x eα α αβ
α β α α β

∞
− − −= +

+ +∫ . 

Differentiating this last equality again, we get 

1 1

(1 ( )) (1 ( ))( )
(1 ( )) (1 ( ))

k n

n k

F x F xF x
n F x k F x

β β
β
α

− −

− − −′ =
− + −

. 

Switching to the inverse function ( )G x , we can rewrite this equality as 

1

(1 )
( )

(1 ) (1 )

n k

n k

n x k
G x

x x

β
α

β β

−

− +

− +
′ =

− − −
, and by taking the antiderivative on both sides, we 

obtain 1

(1 )
( )

(1 ) (1 )

n k

n k

n x k
G x dx

x x

β
α

β β

−

− +

− +
=

− − −∫ . Computing this integral, we obtain  

                                        
( ) ( )

11 (1 )
( ) ln

(1 )

n k
n k

k

n kx C
G x

x

β α
αβ

β

+
−−− −

=
−

,                       (12) 

where 1C  is an arbitrary positive constant. 
It should be noted, that initial d.f. ( )F x  was supposed to be continuous, so, 

it can be uniquely given by its inverse. Thus, we actually proved the following 
theorem. 

T h e o r e m  4 .  Equality by distribution 1, 1,

d

k nY W Y Wα β− = +  for some fixed 
1 k n≤ <  and , 0α β >  holds, iff  the d.f. ( )F x  is uniquely defined through its 
inverse, which is given by (12). 

For the two sided random contraction/dilation scheme we can also derive 
analogous result for sample maximums, as it had been done in Corollary 1. 
Consider the sequence 1 2, , ,...X X X  from the previous section. The d.f. of these 
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random variables ( ) 1 ( )H x F x= − −  is continuous, and hence it has uniquely 
defined inverse. It is obvious that the inverse function of ( )H x  will be given by 

1( ) ( ) (1 )R x H x G x−= = − − . Now we can formulate similar result for two sided 
random contraction/dilation scheme for sample maximums. 

Corollary 3.  Equality by distribution , ,

d

k k n nX W X Wα β+ = −  for some fixed 
1 k n≤ <  and , 0α β >  holds, iff the d.f. ( )H x  is uniquely defined through its 

inverse, which is given by ( )
2( ) ln (1 )

n kk
k nn kR x x x C

β α
αββ

+
−−⎡ ⎤= −⎢ ⎥⎣ ⎦

, where 2C  is an 

arbitrary positive constant. 
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