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ON THE GENERALIZED SAMPLE RANGE

V. K. SAGHATELYAN"
Chair of Actuarial Mathematics YSU, Armenia

A new statistic called “generalized sample range” is introduced and estimation
of its expectation is provided. Maximum value of expectation of new range is
determined. Characterization of corresponding distribution, which affords that
maximum is obtained. The asymptotic behavior and limiting relations of the
distribution and its characterization are considered.

Keywords: order statistics, sample range, selection differential, characteri-
zation of distributions, bounds for ordered random variables, limiting distribution,
generalization of sample range.

Introduction. In this article we are going to find boundaries and consider
asymptotic behavior of a statistical quantity, which we called “generalized sample
range”. This statistical quantity actually is the generalization of regular sample
range and in some sense selection differential. Analogous researches could be
found for sample extremes, selection differential and for sums of order statistics
and record values (see [1-3]). In particular, in [1] estimations for EX EX|,

and EW,, where W, =X, —X,, and X, , and X, are order statistics from the

n n 1,n
independent, identically distributed random variables sequence X, X, X,,... with
common continuous distribution function F(x), can be founded. Also, similar

results for so called selection differential D(k,n)zl Y. X,, obtained by

i=n—k+1

Nagaraja (see [2]). Further, in [3] one can find estimations of EV,, and ET,

n,m?>

where V., = X(N(m+1))+...+ X(N(n)), (here N(n) is the number of all record

values in X,,X,,.,X,), i1s the sum of all record values (see [4]), in
X Xpiaoew X, and T, =X, + X, 0+ 4 X,

Generalized Sample Range. First, let us define the generalized sample
range. Let X,,X,,..,X, be a sample from arbitrary distribution. The statistic
W=+t X, 0, — (X, +..+ X, ) we will call generalized sample range.

* E-mail: v.saghatelyan@ysu.am




22 Proc. of the Yerevan State Univ. Phys. and Mathem. Sci., 2012, Ne 3, p. 21-28.

. . . . . ~ 1 . .
We are also going to consider its standardized version W, = ;Wk ,- 1t is obvious

that for k=1 W,

1n

:VVn:Xn,n_X

1Ln»>

so, actually W, is the generalization of

sample range W, . The following theorem is true.

Theorem 1. Let X, X,,... be independent, identically distributed random
variables with common continuous distribution function F(x). Moreover EX, =0,
DX; =1 for any i. Then, for any k=12,..., n=2,3,..., k<n, the following
inequality holds
EWy <ty s 6]

1/2

2
( .[ V(] )] dv] du} . Moreover, the equality in

1-u

|
where g, = knC* | [2 I

1/2
(1) attained only when inverse function for F(x), which is defined as

G(u)=F'(x)=inf{x: F(x)>u}, has the form G(u)= l[knc,’jl [ -2 dzj,
,U 1—u
1/2

1 u 2
where 4 =knC,f_{2J' [ [ (l—v)k_1 dv] du]

1/2\1-u
Proof. The statistic W, , can be represented as W, A =T,-T, where
I=X,,+.+tX

wisin @nd T =X, +..+ X, . Itis easy to see that set of order

statistics X

Lo

X, , in the case when X, =x can be viewed as a complete set
of order statistics ¥’ <Y, <...<Y} built by the sequence ¥V, ¥;",...¥* of

independent random variables with common conditional distribution function
FOw)=P{¥"™ <u}=F(u)/F(x), u<x.Consider

EXS +Y50 +. 4+ Y ) =EQ + Y, + 4+ Y =kEYY =k/ F (x) [ udF(u), (2)

then
ET = ]‘J (k/F(x) jf udF(u)dekH’n (%), 3)

where F,_,,(x) is the distribution function of X, , . From (3), taking into account

+l,n

X

that F,, ,(x)= J nC*

n—1

(Fu))* (1= Fu))"* " dF (u) (see [2]), we obtain

1 1
ET, =knC, | G(u)[ [ (1=v)™ dvj du. (4)
0 u

Similarly, since the value X =x 1s fixed, the set of order statistics

n—k,n

X X,, can be represented as a complete set of k& order statistics

n—k+l,n2**>“*n.n

W W, . W), which are built by sequence W™, ;... W™ of independent
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random  variables with common  conditional  distribution  function
Fy(u) =P <u}=(F(u)— F(x))/(1- F(x)), u>x . Therefore, we get

EWV + W+ 4 W) = EWS + W0+ 4+ W D) =

) © (5)
=kEW"™ =k [udF, = dF (u).
1 {“ (x>(”) 1—F(x) {“ (u)
Hence, for the second summand E7, we have
o0 k o0
ET, = dF F , 6
2 __[O[I_F(x) _[u (u)jd n—k,n (x) ( )

where F, , ,(x) is the distribution function of X, , , and it is known that (see [1])
F i a()= [ nCH ™ (Fu)"™ ' (1= F(u)) dF (u) . Thus, recalling that G(u)=F"'(x),

from (6) we obtain

ET, =knC!| [ ) G(u)dujv”_k_l (1-v)" dv=knCt, [G(u) (f V' (1) va du .(7)

0

Using expressions (4) and (7), we finally get the following for generalized
sample range:

1 u 1-u
EW,, = ETy~ET, = knC\_ | G(u)( [yt (=) av— [ vt (1-v) dvj du.(8)
0 0 0

Considering that our initial random variables X,, X,,... have zero expectation
and unit variance, we can assert that inverse function G(x) satisfies conditions

_I[G(u)du =0, j.Gz (u)du=1. (*)
0 0

Taking into consideration, that we need to find such function G(x), which

attains maximum in (1), so, using techniques of classical calculus of variations, we
have to find stationary values of (8) first. To do this, we must obtain the
unconditional extremum for

1 1
EW,, - A[Gu)du— /2] G*(u)du, 9)
0 0

after which, using condition (*), we get the values of constants A and . Consider

F(G)) = G(u)(kanf_l ﬁv"“ (1-v) " dv- l]u v (1-y) dvD —AG(u) —%Gz ().

0 0
Solving the equation f'(G)=0, we obtain

u 1—u
knC" (_[v"kl (1- v)ki1 dv— I yil (1- v)k71 dvj -1 —%G =0.
0 0
Hence,

Gu)= l{kanl U"n_k—l (1-v)" av- T Vi (1-v) dv} - /1} . (10
U

0 0
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Therefore, we saw that maximum in (9) is attainable and is reached when the
function G(u) has the form (10). To find the coefficients 4 and g, we use

condition (*) for G(x) described above. Thus, for 4 we gain

1|l u 1-u
A= knC,flJ.Dv"_k_l (1- v)k_l dv— I V(1 v)k_1 dv}du =
0lo 0

= knC} [TU Vi (1=v) vadu + } ( [t (1) dvjdu .

0 —u 1/2\1-u
Making change of variable 1—u =t in the last integral, we obtain

A=knCL, (TU v (1-v) va du ~ T ﬁt T 0 0 dv]dt =

0 \I-u 1/2\ ¢t

= knC} UZ( [y (=) dvj du ~ T( j v (1-v) dvjdtj =0.

0 \1-u 0 \1-¢

It is obvious, that for 4 =0, the function G(u) is symmetric with respect to 1/2.
1—u u
G(l—u) = knC", [ [ v (1=v) T dv= [y (1-v) dv] = —G(u).
H 0 0

Further, using (*) as above, we are obtaining an expression for

—u 2
e =(kan_l )2 [}[Iv”“(l—v)k_l dv—l_[ v"ikil(l—v)k_1 dv] du}. (11)

0\0 0

Let us consider the integral in the right-hand side of (11). It seems to be very
lengthy, so, for the sake of simplification, we are formally introducing a notation

V=v"(1- v)k_l dv . Thus, we have

e 1me ) V2(u 1eu )2 (e e 2 e 1 )
j[jV—jVj duzj(jV—jVJ du+j’[j’V—j’Vj duzzj(jV—jVJ .
((AN((] 0 0 \0 0 1/2\0 0 1/2\0 0

Using this last expression, our notation and (11), we get the following
expression for u:

2 1/2
u=knC" (2'1[ ( _T v”_k_l(l—v)k_l dv) du} i (12)

172\ 1-u

Recalling (10) and considering the results for 4 and x, we can write down
the form of inverse function G(u), which is determining the initial distribution
function we needed:

G(u)=-G(1-u) =i{kan_l[ j 7 (1-2)7 dzﬂ , %s u<l,  (13)
H 1

where u is defined by (12).
To finalize the proof we need to find the maximum of EW, , and show that it

is attained when the inverse function of initial distribution function is given by (13).
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In terms of simplification, let us wuse our symbolic notation again

V=v"(1 —v)]H dv, so, from (8) and symmetric property of G(u) we obtain

EW, , =knCy le(u)(j VJdu knC~_ { [Ga- u)(lj V}du+ | G(u)[f V]du}

1-u —u 1/2 1-u

=knC, ﬁzG(t)( | den | G(u)[ | VJdu} =2knC, j G(z)U detzo,

172 1-u 1/2 —t

ie. EW,,=2knC,, | G(t)( [y (- v)k*1 va dt>0. Now we can use the well
1/2 1-t

known Cauchy—Schwarz—Buniakowski inequality, which yields
1/2

1/2 ¢ 2
Emﬁszknc,’;_IUGz(t)dz} U(jv"“(l—v)"‘ldv] dt} . (14

1/2 1/2\1-t

It is easy to see that .[ G*(t)dt = IG Odt =— Really, symmetric property
172
1/2

of G(u) implies G*(u)=G*(1-u), thus, .[Gz(u)du— f G*(t)dt, and using
172
1/2

conditions (*) f G* (u)du + j G*(u)du=1.
172

Retumlng back to (14), we can write
1/2

j ( [y (1) dvjz dt} =2u,

1/2\1-¢

2knC,f_l [

1/2
where 4 is given by (12). And hence, EW, , < \/E,u(%j = u . Further we must

verify that maximum value g is really attained when inverse of distribution
function is given by (13). To make sure of it, we have to substitute (13) in (8):

EW,, =2knC, | | G(z)[f Vi (1) dvjdt—

1/2

1
=2knCy_, [ G(1) G(t)dt =2u j G*(t)dt = u
1/2 nt, 172
Thus, the maximum value of EW, , exists, it is equal to 4 and attains when

G(u) is given by (13). The Theorem is proved.
Asymptotic Behavior of EW, . We are going to consider limiting case of

w,
inequality for E—%" when »n tends to infinity and k~an, O<a<l. Let
n

Ui, U,,... be a sequence of independent random variables distributed uniformly on
[0,1], and let Uy, be the corresponding order statistics. It is known (see [5]) that
distribution function of Uy, can be given by
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° n!
P{Uk,n Sx}z'([m

Therefore, for order statistic U,_, ,; we have

M a-0"rdr, 0<x<l.

P{-us<U, ., <uf=(n-DC [V (1-v) " dv, if u=1/2, (15)
1-u
and it is easy to obtain EU, , :ﬂzl—ﬁ , DU, , _{n=bk
, " :

3 . Because
n n (n+1)

of k~an , 0<a<l, when n is very large, we have EU,,,  ~1-a and
a(l-a)

P k
, moreover, U, , , ,——>1——=1-a when n— oo . Thus,

DUn—k,n—l ~
n

(n-1C-) _T v"_k_l(l—v)k_1 dv=P{1—u<U <M}T1, if l-ae[l-u,ul,

= ~n—k,n-1 —
1-u

- n—

(n-1)C*} if y ok (1- v)k_1 dv= P{l ~u<U, ;< u} ——>0, otherwise.

1-u
Considering the definition of W, , it can be assumed 0<a<1/2 and

because in (15) 1-u<1/2, so, 1-u<l-«, that’s why it remains to be seen
whether 1-a <u, i.e. the case when u €[1—a,1]. Without loss of generality we
may take 1/2 <u <1 and write down from (12):

1/2

k u 2
7 ~—knc’1‘1\/§ [ .lf ( I (n —I)C,lf_gv”*k*1 (1 —v)k_l dvj duJ ~

(n=DCy 5 {12\

1/2 (16)
1
~[ f 12du} ~n\/z.

l-a
From (16) the following estimation yields
w, W, X, o+t X pmiin X, t+X,,
k,n = o _ | n,n (I-a)n+l, -E 1, , S\/Z ) (17)
n n n n

Further we are going to establish the distribution function, under which the
maximum in (17) is attained. Recalling (13) and taking into account that

(1= (-1
(n—k-Dl(k-1)!
write for u €[1/2, 1]:

1| knC*  (n—k—1)!(k —1)!
G(u)z;{ ! n(n—l)! P{l—uSUn_k,n_1 Su}}z

nl(n—-Ek-=1)!
_L|_Knin—k-D)! P{l-u<U,,, <u}|="P{l-u<U, ., <u}.
1| kl(n—k-1D)l(n-1)! ’ 7 ’

Let us notice that for £ ~an and a €(0,1/2) the following limiting relation holds:

E

is the density function of U, , ,, when 0<z<I, we can
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(Un—k,n—l - (l - Cl)) V7 / a(l - a) ~ N(Oa 1) >

where N(0,1) is the standard normal distribution function. Thus, when n — o

U, pa~1-a)+éJa(l-a)/n, (18)

where & is random variable with standard normal distribution. Hence, from (18)

P{l—-u SUn_k’n_l <u}—>1 whenl-a<u,

we have
Pl-u<U, ;, ,<u}—>0 whenl-a>u.

Using this last expressions and (16), we get
~ if 1—a<u<
G(M)N{n/,u 1/\2a, if 1—a<u<l,

on the other hand symmetry property
if 12<u<a

2

-1/2a, if 0fu<a,

yields G(u)~{ . Thus, we can write down the needed

0, if a<u<l/2
—-1/~2a¢0 when O<u<a,
function as G(u) =40 when a<u<l-a,

1/N2a when 1-a<u<l.

Notice that G(0)= ~1/\2a , GH=1/ V2a , and this inverse function
determines the distribution function, which is concentrated in three points
~1/2a, 0 and 1/\2a , with corresponding weights «, 1-2a and .

Summarizing what has been written above, we can say that the following
result has been obtained. Let W, be the generalized sample range constructed by
a sequence X,,X,,... of independent random variables with common continuous

distribution function with 0 expectation and unit variance. Also, let F{,F,,... be

a sequence of those distribution functions, which afford maximum in E[W“"’”j
n

for fixed values of n=1,2,... and O<a < % . The following theorem is true.

. w
Theorem 2. When n— o the maximum value of E [ﬂj tends to
n

v2a , and the sequence of maximizing functions Fj,F,,... tends to a distribution

function, which has symmetry property and is concentrated in three points L , 0

V2a

and L , with corresponding weights o, 1-2¢ and .

V2a

Corollary 1. Notice that when « =% the limiting distribution function
described in Theorem will be concentrated in two points —1 and 1 with equal

weights % for each.
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Corollary 2. It is easy to see that similar results are true also for the
components 7, and 7, of generalized sample range

E(ann+...+X(17a)n,n) — )\/% and E(Xl,n +"'+Xan,n) a

n—w
n n 2

relatively.

Corollary 3. Tt should be noted, that if we take EX =a and DX =0
instead of condition (*), then we can obtain for 7, and T;:

E(Xn,n +"‘+X(1—a)n,n) — ato }%

n

E(Xl,n+...+X0m,n) § a—a\/g.
n e 2

————0~2a , and this results correspond to the symmetric

and

an,n

Moreover, E

n
L ) o o . :
distribution concentrated in ———, 0 and —, with weights «, 1-2« and «
N2a N2a
respectively.
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