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The contact problem has been considered for elastic composite (piecewise-
homogeneous) infinite plate consisting of two semi-infinite plates interlinked 
along the common straight border. Parallel to this line of heterogeneity of these 
semi-infinite plates with different elastic properties, an elastic piecewise-homo-
geneous infinite stringer is continuously glued over its full length and width on 
the upper semi-infinite plate, the layer of glue during the deformation being in the 
state of pure shear. The contacting triple (plate–glue–stringer) is simultaneously 
deformed by codirectional concentrated forces applied to the stringer and 
uniformly distributed horizontal tensile stresses of piecewise–constant intensity 
acting at infinity on the plate. According to the generalized Fourier integral 
transform, under certain conditions the solution of contact problem under 
consideration reduces to a solution of functional equation in the Fourier 
transforms of an unknown function on the real axis. A closed form solution of the 
contact problem in question is given in an integral form. As a result of 
investigations it was shown that due to the presence of the layer of glue the 
tangential contact forces have no singularities in the points of application of forces 
and in sections of semi-infinite stringer attachment. 

Keywords:  composite plate, contact, stringer, layer of glue, pure shear, 
Fourier transform, functional equation, asymptotic representation of function. 

 
1. Let an elastic solid isotropic plate in the form of thin composite 

(piecewise-homogeneous) infinite plate of small constant thickness h , consisting 
of two semi-infinite plates showing different elastic properties, that are linked 
along the common straight border, be strengthened along ( 0)y a a= >  line on the 
upper semi-infinite plate by an elastic piecewise-homogeneous infinite stringer of 
sufficiently small constant rectangular cross-section. Being continuously glued 
over its full length and width to the upper semi-infinite plate, the elastic piecewise-
homogeneous infinite stringer is directed along and parallel to the dividing 
heterogeneity line of the mentioned semi-infinite plates as axis of abscissa, has 
different elastic characteristics and the contact with them is realized via sufficiently 
thin layer of glue having constant thickness kh  and width kd .  
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The problem consists in determination of the intensity distribution of tangen-
tial contact forces acting along the line of contact between the stringer and the upper 
semi-infinite plate when the contacted triple (plate–glue–stringer) is simultaneously 
deformed by codirectional and concentrated forces Pδ(x–b)δ(y–a)(b>0) and  
Qδ(x+c)δ(y–a)(c>0) applied to the stringer, and uniformly distributed horizontal 
tensile stresses of piecewise constant intensity σ0(y) acting at infinity of elastic 
composite (piecewise-homogeneous) infinite plate. 

The contact problem under investigation is solved based on the following 
three basic assumptions [1–8]:  

• for elastic piecewise-homogeneous infinite stringer a model of uniaxial 
stress state in combination with the model of contact along the line was adopted, 
i.e. it was assumed that the tangential contact forces are concentrated along the 
medial line of contact area;  

• during the deformation the elastic composite infinite plate is assumed to be 
in a generalized plane state, owing to which it is deformed as a plane; 

• during the deformation the layer of glue is assumed to be in the state of 
pure shear. 

Under the terms of contact problem under consideration the modulus of 
elasticity, the cross-sectional area of stringer and the piecewise-constant function 
σ0(y) of distribution intensity are determined by formulae 
            { } { } { }(1) (1) (2) (2)( ); ( ) ; ( ) ; ( ) ( ),S S S S S SE x F x E F x E F x xθ θ= + − −∞ < < ∞     (1.1) 

0
0 1 1( ) [ ( )sgn ] ( ; | | ),

2
y E E E E y y x

E
σ

σ = + + − −∞ < < ∞ →∞           (1.2) 

where ( )tθ  is the Heaviside unit step function, sgn t  is the well-known sign 
function and ( ) ( )

1 0, , , , const ( 1,2).n n
S SE F E E nσ = =  

Turning now to the derivation of resolving functional equation for the 
contact problem in question it is easy to see that the stringer is stretched or 
shrunken in the horizontal direction while being in a uniaxial stress state. Then, 
based on the aforesaid the equilibrium differential equations of separate parts of the 
piecewise-homogeneous stringer making allowance for the Hook’s law will assume 
the following forms:  

                     
2 (1) (1)

2 (1) (1) (1) (1)
( ; ) ( ) ( ) (0 ),S

S S S S

d u x a x P x b x
dx E F E F

τ δ −
= − < < ∞                    (1.3) 

                    
2 (2) (2)

2 (2) (2) (2) (2)
( ; ) ( ) ( ) ( 0),S

S S S S

d u x a x Q x c x
dx E F E F

τ δ +
= − −∞ < <                 (1.4) 

that respectively satisfy the following boundary conditions and conditions at 
infinity: 

                    

(1) (2)
0 0

(1) (1) (2) (2)
0 0

(1) (2)
0 0

( ; ) ( ; ) ,

( ; ) ( ; ); ,

S S

S S S Sx x

S S

x x

du x a du x a X X
dx dx E F E F

du x a du x a
dx E dx E

σ σ
=+ =−

→+∞ →−∞

− = −

= =

                (1.5) 

as well as the conditions of the equilibrium of elastic semi-infinite stringers: 
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0

(1) (2)
0 0 0 0

0
( ) ( ); ( ) ( ) ,s ds P P X a s ds Q Q X bτ τ

∞

−∞

= + − = − +∫ ∫    (1.6) 

where 
(1) (1)

0 0
S SE FP

E
σ=  and 

(2) (2)

0 0
S SE FQ

E
σ=  are the forces that arise in the elastic 

infinite stringer when x →+∞  and x →−∞  respectively. 
In (1.1)–(1.6) (1) ( ; )Su x a  and (2) ( ; )Su x a  are horizontal displacements of 

stringer points on y a=  line when 0 x< < ∞   and  0x−∞ < < , respectively; 
(1) (1) (1)( )  ( ; ),Sx d x aτ τ=  where (1) ( ; )x aτ  are tangential contact stresses on   y a=  line 

when (1)0 ,  Sx d< < ∞  is the width of that stringer; (2) (2) (2)( )  ( ; ),Sx d x aτ τ=  where 
(2) ( ; )x aτ  are tangential contact stresses on y a=  line when 0,x−∞ < <  (2)

Sd  is 
the width of that stringer; (1)

SE  and (2)
SE  are the elastic moduli, (1) (1) (1) S S SF d h=  and 

(2) (2) (2) S S SF d h=  are the cross sectional areas of the semi-infinite stringers when 
0 x< < ∞  and 0,x−∞ < <  (1)

Sh  and (2)
Sh  are their heights; ( )xδ  is the Dirac delta 

function; P  and Q  are the concentrated forces; 0X  is an unknown longitudinal 
force acting in the   0x=  section of the stringer; 0σ  is the intensity of uniformly 
distributed horizontal tensile stresses acting at infinity of the upper semi-infinite 
plate [6, 8]. 

To express the differential equations (1.3) and (1.4) with due regard for 
conditions (1.5) as a single equation for all ( )x x−∞ < < ∞  the following function is 
introduced [2, 4, 11]: 

               
(1) (2)( ; ) ( ; )( ; ) ( )   ( ) ( ).

def
S S

S
du x a du x aU x a x x x

dx dx
θ θ= + − −∞ < < ∞        (1.7) 

After differentiation of (1.7) in the sense of the theory of generalized 
functions, one arrives at expression  

(1) (2)
0 0

(1) (1) (2) (2) (1) (1) (2) (2) (1) (1) (2) (2)
( ; ) ( ) ( )( ) ( ) ( ) ( )           .S

S S S S S S S S S S S S

dU x a X x X xx x P x b Q x c
dx E F E F E F E F E F E F

δ δτ τ δ δ+ − − +
= + − − + − (1.8) 

The solution of differential equation (1.8) is represented in the following form: 

     

(1) (2)
(1) (1) (2) (2)

0 0 0
(1) (1) (2) (2) (1) (1) (2) (2)

1 1 ( ; )  ( ) ( )  –  ( ) ( )

( ) ( )( ) ( )      ( ).

S
S S S S

S S S S S S S S

U x a s x s ds s x s ds
E F E F

X x X xP b x Q c x x
EE F E F E F E F

θ τ θ τ

θ θ σθ θ

∞ ∞

+ −
−∞ −∞

=− − − +

− −− − −
+ + − + + −∞ < < ∞

∫ ∫
    (1.9) 

Note, that as in formulas (1.8) and (1.9) 
            (1) (1) (2) (2) (1) (2)( )  ( ) ( );    ( )  ( ) ( );   ( )  ( ) ( ),x x x x x x x x xτ θ τ τ θ τ τ τ τ+ − + −= = − + =   (1.10) 
stringer equilibrium the conditions of  (1.6) will be equivalent to condition  

                                               0 0 ( )     .s ds P Q P Qτ
∞

−∞

= + + −∫                                    (1.11) 

On the other hand, when tangential contact stresses of ( )xτ  intensity 
(  )x−∞ < < ∞  act on   y a=  line and simultaneously uniformly distributed 



Hovnahhisyan H. V. Contanct Problem for a Piecewise–Homogeneous Infinite Plate... 
  

37 

horizontal tensile stresses of constant 0σ  intensity act at infinity, we have for the 
horizontal deformation of the upper semi-infinite plate [6, 8]: 

0
( ; ) 1 1( ; ) ( ) ( ) ( ).

def du x a hlhlU x a hl K s x s ds x
dx s x E

τ σ
π

∞

−∞

⎡ ⎤= = + − + −∞ < < ∞⎢ ⎥−⎣ ⎦
∫  (1.12) 

Here the following notations are introduced: 
(1) (2)( ; ) ( ; ) 8 4( ; ) ( ) ( ) ,     ,

3 (1 )(3 )
du x a du x a EU x a x x l

dx dx
μθ θ
ν ν ν

= + − = =
− + −

 

2 2 22
31 2

2 2 2 2 2 2 2 3
2 ( 12 )8( ) ,

4 ( 4 ) ( 4 )
d a x x ad x d a xK x

x a x a x a
−

= − + +
+ + +

 (1.13) 

1 1 1
1

1 1

(3 )[ (3 )(1 )  2(1 )(1 )]  (3 )[8 (1 )(3 )]   ,
(3 )[ (3 ) 1 ] [3 (1 )]

k kd
k k

ν ν ν ν ν ν ν ν
ν ν ν ν ν

− − + + − − − − − + −
=

− − + + − + +
 

2
1 1

2 3
1

(1 )( 1)(1 ) 2( 1)(1 )   ,      ,     ,
(3 ) 1 (3 ) [ (3 ) 1 ] (1 )

Ek kd d k
k k E

μ νν ν
ν ν ν ν ν μ ν

+− + − +
= = = =

− + + − − + + +
 

where (1) ( ; )u x a  and (2) ( ; )u x a  are horizontal deflections of the upper semi-infinite 
plate on the y a=  line when 0 x< < ∞  and 0x−∞ < <  respectively; ( ; ; )E μ ν  
and 1 1 1( ; ; )E μ ν  are the elastic characteristics of the upper and lower semi-infinite 
plates; E  and 1E  are the elastic moduli, μ  and 1μ  are the shear moduli, ν  and 1ν  
are the Poisson ratios of the semi-infinite plate materials. 

Now, keeping in mind that each differential element of the glue layer during 
deformation is in the pure shear state, we obtain [3, 5–8]: 

( ; )
( ; ) ( ; ) ; ( ) ( ; ) ( ; )k

S k k k k k
d x a

U x a U x a h x d x a d G x a
dx

γ
τ τ γ− = = =  ( ),x−∞ < < ∞  (1.14) 

where ( ; )k x aγ  is the shear deformation and kG  is the shear modulus of the glue 
layer, (1) (2) (1) (1)min{ ; },k k k k Sd d d d d= ≡  and (2) (2)

k Sd d≡  are the widths of glue layers. 
To obtain the resolving functional equation of the contact problem under 

consideration, we use the generalized Fourier integral transform. For this purpose, 
applying the generalized Fourier integral transform to formulas (1.9), (1.12) and 
(1.14), we respectively obtain [8, 9]: 

(1) (2)

(1) (1) (2) (2) (1) (1) (2) (2)

0 0 0
(1) (1) (2) (2)

( ) ( )( ; )

( ) 2 ( ) ( ),

i b i c

S
S S S S S S S S

S S S S

Pe QeU a
E F E F E F E F

X X i
EE F E F

σ στ σ τ σσ

σ
πδ σ πδ σ σ

σ

−
+ −⎡

= − − + + −⎢
⎣

⎤ ⎡ ⎤− + − + −∞ < < ∞⎥ ⎢ ⎥⎣ ⎦⎦

 (1.15)  

22 2
0 1 2 3( ; ) 2 ( ) sgn 1 ( 2 | | ) ( ),ahlhlU a i d d a d a e

E
σσ σ πδ σ σ σ σ τ σ−⎡ ⎤= − + − + −⎣ ⎦  (1.16) 

( ; ) ( ; ) ( ) ( )k
S

k k

hU a U a i
G d

σ σ σ τ σ− = −         ( ),σ−∞ < < ∞  (1.17) 

where σ  is the spectral parameter of Fourier transform; ( ) [ ( )]A F A xσ =  is the 
Fourier transformant of ( )A x  function and [ ]F i  is the Fourier operator. Note that 
for obtaining of (1.15)–(1.17) the following formulas were used [8, 9]: 
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2 2 | |
2 sgn[sgn ] ; [ ( )] ( ) ; ,y
i i t iF t F t F

t y eσ
π σθ πδ σ

σ σ
⎡ ⎤

= ± = ± =⎢ ⎥+⎣ ⎦
 

2 2 2 | | 2 2 3 3 | |
1 | |,

( ) 2 | | ( ) 8 | |y y
t i t i yF F

t y y e t y y eσ σ
πσ πσ σ⎡ ⎤ ⎡ ⎤ +

= = ⋅⎢ ⎥ ⎢ ⎥+ +⎣ ⎦ ⎣ ⎦  
( , , ).t yσ−∞ < < ∞  

After simple transformations we obtain based on comparison of formulas 
(1.15), (1.16) and (1.17) the following functional equation with respect to Fourier 
transforms of distribution functions of unknown tangential contact forces of (1) ( )xτ+   
and (2) ( )xτ−   intensities ( ),x−∞ < < ∞  which are the basic unknown functions of the 
contact problem under consideration: 

   
2 (1) 2 (2)

1 2[ | | (| |)] ( ) [ | | (| |)] ( ) ( )
( ),

B B fλ σ ασ σ τ σ λ σ ασ σ τ σ σ
σ

+ −+ + + + + + + =
−∞ < < ∞

 (1.18) 

the following notations being introduced here: 
2 2 3 2 | |

1 2 3 1 2(1) (1) (2) (2)

1 2 2 1 0

(| |) ( | | 2 | | ) , , ,

2(1 )( ) ( ) , ,

a

S S S S

i b i c k
k

k k

hl hlB d d a d a e
E F E F

f P e Q e X h hl
E d

σ

σ σ

σ σ σ σ λ λ

ν
σ λ λ λ λ α

−

−

= − + − = =

+
= ⋅ + ⋅ + − =

 (1.19) 

where Ek and vk are the Young modulus and Poisson ratio of the material of glue 
layer. Functional equation (1.18) may be transformed to the form 
                          (1) (2)( ) ( ) ( ) ( )G gσ τ σ τ σ σ+ −+ =         ( ),σ−∞ < < ∞          (1.20) 
the kernel ( )G σ  and the free term ( )g σ  in which are defined as  

           ( )
2

1
2 2

2 2

| | (| |) ( )( ) , .
| | (| |) | | (| |)

B fG g
B B

λ σ ασ σ σσ σ
λ σ ασ σ λ σ ασ σ
+ + +

= =
+ + + + + +

   (1.21) 

It is easy to see that condition (1.11) is equivalent to condition  
                                                  0 0(0) .P Q P Qτ = + + −                                    (1.22) 

Thus, under the assumptions made the solution of stated contact problem 
was reduced to solution on the whole real axis of functional equation (1.20) with 
respect tо (1) ( )τ σ+  and (2) ( )τ σ−  subject to condition (1.22). It should be noted that 

since functions (1) ( )τ σ+ and (2) ( )τ σ−  are the boundary values of analytical functions 
(1) ( )τ α+  and (2) ( ) ( )iτ α α σ τ− = +  that are regular in the upper and lower semi-

planes respectively, the functional equation can be solved either as a Riemann 
boundary value problem in analytical function theory or by means of the Wiener-
Hopf method. However, the solution of functional equation (1.20) under condition 
(1.22) was constructed using the method set out in [3, 4, 10]. 

2. Now note with the view of solving the functional equation (1.20) subject 
to condition (1.22) that as ( )xτ ( )x−∞ < < ∞  is a summable function on the whole 

real axis, functions (1) ( )τ σ+  and (2) ( )τ σ−  tend to zero when | |σ →∞ . On the other 
hand, it is easy to see that ( ) 1G σ →  when | |σ →∞ . Thus, the kernel ( )G σ  of 
functional equation (1.20) is represented as [2–4] 
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                                      1 ( )( )
1 ( )

KG
K

σ
σ

σ
+

−

+
=

+
         ( ).σ−∞ < < ∞                           (2.1) 

Here ( )K σ+  and ( )K σ−  are boundary values of analytical functions ( )K α+  and 
( ),K α−  which are regular and have no zeros in the upper Im 0α >  and the lower 

Im 0α <  semi-planes respectively with 

     ( 0)

0

0
( 0)

( ) exp{ ( )} 1, ( ) exp{ ( )} 1,

1ln ( ) ( ) ( ) ( ), ( ) ln ( ) ,
2

ln ( )1( ) ( ) ln ( ) ,

ln ( )1( ) ( ) ln ( ) ,

i x

i i x

i i x

K F K F

G F F F F x G e d

G s ds
F F x e dx G

i s

G s ds
F F x e dx G

i s

σ

σ

σ

σ σ σ σ

σ σ σ σ σ σ
π

σ σ
π σ

σ σ
π σ

+ + − −

∞
−

+ −
−∞

∞ ∞
+

+
−∞

∞
−

−
−∞ −∞

= − = − −

= = + =

= = +
−

= = −
−

∫

∫ ∫

∫ ∫

       (2.2) 

and the integrals with Cauchy kernel are conceived in the sense of their main value. 
It is obvious, that when | |σ →∞  ( ) 0.F σ± →  Then, in view of 

representation (2.1), the functional equation (1.20) is written in the following form: 
     (1) (2)[1 ( )] ( ) [1 ( )] ( ) ( )[1 ( )]K K g Kσ τ σ σ τ σ σ σ+ + − − −+ + + = +  ( ).σ−∞ < < ∞    (2.3) 

On the other side, since 
                  ( )[1 ( )] ( ) ( ) ( )g Kσ σ ϕ σ ϕ σ ϕ σ− + −+ = = +       ( ),σ−∞ < < ∞            (2.4) 
where 

0
( 0) ( 0)

0
( ) ( ) ; ( ) ( ) ,i i x i i xx e dx x e dxσ σϕ σ ϕ ϕ σ ϕ

∞
+ −

+ −
−∞

= =∫ ∫  

                                    1( ) ( )[1 ( )] ,
2

i xx g K e dσϕ σ σ σ
π

∞
−

−
−∞

= +∫                         (2.5) 

one can represent equality (2.3) as follows: 
(1) (1) (2) (2)( ) 1 ( ) ( ) ( ) ( ) 1 ( ) ( ) ( )

def def
L K K Lσ σ τ σ ϕ σ ϕ σ σ τ σ σ+ + + + − − − −⎡ ⎤ ⎡ ⎤= + − = − + =⎣ ⎦ ⎣ ⎦  

                                                       ( ).σ−∞ < < ∞                                                 (2.6) 
Now, applying the generalized inverse Fourier integral transform to equality (2.6), 
we eventually arrive at the following equality: 

                               (1) (2)( ) ( )L x L x+ −=       ( ),x−∞ < < ∞                         (2.7) 
which means that (1) ( )L x+  and (2) ( )L x−  are generalized functions concentrated in the 
zero point. Therefore, one can represent them in the following form [3, 4]: 

                          (1) (2) ( )

0
( ) ( ) ( )

n
k

k
k

L x L x a xδ+ −
=

= = ∑       ( ),x−∞ < < ∞            (2.8) 

where ( ) ( )n xδ  is the n -th derivative of Dirac’s function ( ).xδ  Next, applying to 
(2.8) the generalized integral Fourier transform, we obtain as a result: 

                         (1) (2)

0
( ) ( ) ( )

n
k

k
k

L L a iσ σ σ+ −
=

= = −∑      ( ).σ−∞ < < ∞            (2.9) 
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Based on the aforesaid it is easy to see that when | |σ →∞  (1) ( ) 0L σ+ →  and 
(2) ( ) 0L σ− → , and we obtain from (2.9) that 0 ( 0; ).ka k n= =  This means that for 

all σ−∞ < < ∞  (1) (2)( ) ( ) 0.L Lσ σ+ −≡ ≡  Then the solution of functional equation 
(1.20) is obtained from (2.6) and is written in the following form: 

                  (1) (2)( ) ( )( ) , ( )
1 ( ) 1 ( )K K
ϕ σ ϕ στ σ τ σ

σ σ
+ −

+ −
+ −

= =
+ +

    ( ).σ−∞ < < ∞          (2.10) 

If we now apply the generalized inverse Fourier integral transform to (2.10) 
with due regard for representations (1.10), we respectively obtain for intensities 

(1) ( )xτ  and (2) ( )xτ  of unknown tangential contact stresses: 

                    (1) ( )1( )
2 1 ( )

i xx e d
K

σϕ σ
τ σ

π σ

∞
−+

−∞ +

=
+∫        (0 ),x< < ∞                       (2.11) 

                   (2) ( )1( )
2 1 ( )

i xx e d
K

σϕ σ
τ σ

π σ

∞
−−

−∞ −

=
+∫        ( 0)x−∞ < <                       (2.12) 

Thus, the closed-form solution of contact problem under consideration was 
obtained in integral form the unknown functions (1) ( )xτ  and (2) ( )xτ  being (2.11) 
and (2.12) respectively. 

3. It should be noted that the solution of the contact problem under 
investigation is also reducible to the solution of Fredholm integral equation of the 
second kind assuming the solution by means of the method of iterative 
approximations. Even though equations (2.10) contain functions of complex 
structure the numerical values of functions (1) ( )xτ  and (2) ( )xτ  are readily 
determined by means of this method. Indeed, solving functional equation (1.20) 
with respect to ( )τ σ  under condition (1.22), we obtain: 

     
(1)

2 1
2 2

2 2

( ) ( ) ( ) ( )    
 | | (| |)   | | (| |)

f
B B

λ λ τ σ στ σ
λ σ ασ σ λ σ ασ σ

+−
= +

+ + + + + +
(   ).σ−∞< <∞   (3.1) 

If we now apply the generalized inverse Fourier integral transform to (3.1), 
after some simplifications we obtain the following integral equation: 

                 (1)
2 1 1 ( ) ( ) (| |) ( )   ( )x K x s s ds p xτ λ λ τ

∞

+
−∞

= − − +∫     (     ).x−∞< <∞            (3.2) 

Here the following notations are introduced: 

1 2
02

1 1(| |) ( )cos( )
2   | | (| |)

i xe dK x x d
B

σ σ σ σ σ
π πλ σ ασ σ

−∞ ∞

−∞

= = Λ
+ + +∫ ∫  (     ),x−∞< <∞ (3.3) 

2
2

1 ( ) 1( )  (| |) ( )
2 2  | | (| |)

i x
i xf e dp x f e d

B

σ
σσ σ σ σ σ

π πλ σ ασ σ

−∞ ∞
−

−∞ −∞

= = Λ
+ + +∫ ∫  (    ),x−∞< <∞   (3.4) 

1 2
2[ (|| )]   | | (|| )Bσ λ σ ασ σ−Λ = + + +               (     ).σ−∞< <∞                         (3.5) 

The sought for Fredholm integral equation of the second kind for 
determination of tangential contact stresses (1) ( )xτ  (0   )x< < ∞  is obtained from 
(3.2) based on representations (1.10) as well as taking into account that (1) ( ) 0xτ+ =  
when     0x−∞ < <  and (2) ( ) 0xτ− =  when 0    x< < ∞ : 
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                (1) (1)
2 1 1

0
( ) ( ) (| |) ( )   ( )x K x s s ds p xτ λ λ τ

∞

= − − +∫      (0    ).x< < ∞            (3.6) 

It is obvious, that the function ( )p x  can be represented also as follows: 
   1 1 2 1 2 1 0 1 ( ) (| |) (| |) ( ) (| |)p x PK x b QK x c X K xλ λ λ λ= − + + + −   (    ).x−∞< <∞   (3.7) 

Then, determining from (3.6) (1) ( )xτ  function (0    ) ,x< < ∞  one can 
determine from (3.2) (2) ( )xτ  function (     0)x−∞ < <  in the following form: 

               (2) (1)
2 1 1

0
( ) ( ) (| |) ( ) ( )x K x s s ds p xτ λ λ τ

∞

= − − +∫     (     0).x−∞ < <            (3.8) 

Note, that the unknown constant 0X  is determined from conditions (1.6).  
Thus, in this case the solution of the contact problem under study was 

reduced to solution of Fredholm integral equation of the second kind (3.6). It is 
easy to see that the condition 2 1| | 1,N λ λ− <  where 

                                             1
(0; ) 0

 sup (| |) ,
s

N K x s dx
∞

∈ ∞
= −∫                                      (3.9) 

is sufficient condition for solvability of integral equation (3.6) in the space 
1(0, )L ∞  of summable functions that allows to solve equation (3.6) by means of the 

method of iterative approximations. 
4. Now investigate the behavior of ( )xτ  function ( )x−∞ < < ∞  of the 

distribution intensity of unknown tangential contact stresses both close to and far 
from the application points of concentrated forces. First, let us investigate the 
behavior of ( )xτ  function when | | .x →∞  It is easy to see that in case of | | 0σ →  
the following asymptotic representation for (| |)σΛ  is obtained from (3.5): 
               2 3 4 5 6

0 1 2 3 4 5(| |) | | | | | | ( ),a a a a a aσ σ σ σ σ σ Ο σΛ = − + − + − +            (4.1) 
the following notations being introduced here: 

21
0 1 2 1 2 2 12 3

2 2 2

3 2 2
3 1 2 1 2 1 2 3 2 14

2

4 2 2 2
4 1 2 1 2 1 2 1 3 2 15

2

2 2
2 2 1

11 1; ; (1 ) ( 2 2 ) ,

1 (1 ) 2 (1 )( 2 2 ) ( 4 2 ) ,

1 (1 ) 3 (1 ) ( 2 2 ) 2 (1 )( 4 2 )

2( 2 2 )
3

da a a d ad ad

a d d ad ad a d d d

a d d ad ad a d d d d

ad ad

λ α
λ λ λ

λ α λ
λ

λ α λ
λ

λ α

− ⎡ ⎤= = = − − + +⎣ ⎦

⎡ ⎤= − − − + + − + +⎣ ⎦

⎡= − − − + + − − + + +⎣

+ + + − 3 3
2 3 2 1

5 3 2 2 2
5 1 2 1 2 1 2 1 3 2 16

2

2 2 3 3
2 1 2 1 2 1 3 2 1

3 2 4 4
2 2 1 3 2 1 2 3 2 1

(3 6 2 ) , (4.2)

1 (1 ) 4 (1 ) ( 2 2 ) 3 (1 ) ( 4 2 )

43 (1 )( 2 2 ) (1 )(3 6 2 )
3

22 ( 2 2 )( 4 2 ) (3 4 )
3

a d d d

a d d ad ad a d d d d

d ad ad a d d d d

a ad ad d d d a d d d

λ

λ α λ
λ

λ α λ

λ α λ

⎤+ + ⎥⎦

⎡= − − − + + − − + + +⎣

+ − + + − − + + +

⎤+ + + + + − + + .⎥⎦
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          Applying the generalized inverse Fourier integral transform to (4.1), the 
following asymptotic representation is obtained for the kernel 1(| |)K x  of 
Fredholm integral equation of the second kind (3.6) when | | :x →∞  

                               3 51
1 2 4 6 8

6 1201 1(| |) .a aaK x
x x x x

Ο
π
⎛ ⎞ ⎛ ⎞= − + + ⎜ ⎟⎜ ⎟ ⎝ ⎠⎝ ⎠

                        (4.3) 

This means that when | |x →∞  1(| |),K x  therefore, both ( )p x  and ( )xτ  have the 
order of 2( ).xΟ −  Now, let us investigate the behavior of function ( )xτ  when 
| | 0.x →  It is easy to see that (| |)σΛ  function can be represented as follows [8]: 
                          1 2(| |) (| |) (| |)σ σ σΛ = Λ −Λ       ( ),σ−∞ < < ∞                         (4.4) 
where the functions 1(| |)σΛ  and 2 (| |)σΛ  are respectively 

( )
2

1 12
2 1 1 22 2

2
2 22 2

2 2 2

21 1 1 1(| |) , ,
| | | || | 1 4 1

2(| |)(| |) , .
( | | )( | | (| |)) 1 1 4

b
b b b b

B b
B

λσ
α σ σλ σ ασ αλ

λσσ
λ σ ασ λ σ ασ σ αλ

⎛ ⎞
Λ = = − =⎜ ⎟− + ++ + − +⎝ ⎠

Λ = =
+ + + + + − −

(4.5) 

As in case of | |σ →∞  the following asymptotic representation takes place 

                                                 
1

0
( 1) ,

| | | |

n
n

n

k k
k σ σ

+∞

=

⎛ ⎞
= − ⎜ ⎟+ ⎝ ⎠
∑                         (4.6) 

then applying the generalized inverse Fourier transform to representation (4.4) with 
due regard for (4.5) and (4.6), we obtain in case of | | 0x →  the following 
asymptotic formulae for kernel 1(| |)K x  of Fredholm integral equation of the 
second kind (3.6) [6, 8]: 

2 1 2 2
1 2 2

1
02 1 2

2 1 2 2 2
1 1

2 1
1

| | ( )1 1(| |) ( 1) (2 3) ln
( ) 2(2 1)! (2 2)! | |

| | ( ) 1(2 3) ln ( ) ,
2(2 1)! (2 2)! | | (2 )!

n n
n

n

n n n

n

b x b xK x n
b b n n b x

b x b x xn b b B
n n b x n

ψ
α π

ψ α
π

+ +∞
+

=

+ +

⎡ ⎛ ⎞
= − − + + −⎢ ⎜ ⎟− + +⎢ ⎝ ⎠⎣

⎤⎛ ⎞
− + + + + − ⎥⎜ ⎟+ + ⎥⎝ ⎠ ⎦

∑
(4.7) 

here 
2

2 2
0 2 2

1 ( ) ,
( )( ( ))

n

n
B dB

B
σ σ σ

π λ σ ασ λ σ ασ σ

∞

=
+ + + + +∫  ( )xψ  is well known psi-

function.  
It is noteworthy here that asymptotic formulae (4.3) and (4.7) were obtained 

using the values of following integrals [8, 9]: 
1

1 2 (2 ) 1 2 1
2 2

(2 1)! ( 1)[ ] ( 1) ( ), [| | ]
n

n n n n
n

nF x F
x

σ δ σ
π

+
− − +

+

+ −
= − = ⋅   ( 0,1,2,...),n =  (4.8) 

2 1 2 1
1 2 1 1 2 2( 1) 1 ( 1) | |[| | ] (2 1) ln , [ ] ,

(2 )! | | 2(2 1)!

n n n n
n nx xF n F

n x n
σ ψ σ

π

+ +
− − − − − −⎡ ⎤− ⋅ − ⋅

= + + =⎢ ⎥ +⎣ ⎦
 

where [ ]1F − i  is Fourier inverse operator.  
As the kernel 1(| |)K x  is seen from representation (4.7) to be finite when 

| | 0,x →  therefore, the function ( )p x  is finite in points 0,x x c= = −  and x b= . 
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Hence follows that the tangential contact forces in these points 0,x x c= = −  and 
x b=  also have finite values due to the presence of glue layer. It should be 
observed that the series (4.7) are convergent for any value of  x,  .x−∞ < < ∞   

Finally note that in the absence of glue layer the tangential contact forces 
have a logarithmic singularity [12] in 0,x x c= = −  and x b=  points, the 
singularity in x c= −  and x b=  points being caused by concentrated forces P  and 

,Q  and that in 0x =  by the non-homogeneity of stringer. 
Thus, two approaches were adopted for solution of contact problem under 

study, in the first approach (Section 2) a closed solution of the problem in integral 
form was constructed, and in the second one (Section 3) the problem is reduced to 
solution of Fredholm integral equation of the second kind (3.6) without singularities, 
for solution of which the method of iterative approximations is used. 
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