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Huygens–Fresnel principle for dynamical diffraction of X-rays in a crystal 
with weak deformation field of its space lattice is stated with a view to construc-
tion of the wave functions of diffracted beams in the crystal lattice at an arbitrary 
distance r of the point source of primary radiation from the crystal. In particular, 
the well-known approximations of an incident spherical (r = 0) and plane (r → ∞) 
waves result as the limiting cases of the problem under consideration. Some 
features of the interference absorption (the Borrmann effect) of X-ray wave 
packages in a crystal with weak field of lattice displacements were discussed. 
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The problem of dynamic diffraction of a narrow X-ray beam (in the 
spherical wave approximation) in a crystal with weak deformation field has been 
considered in [1]. Of special interest are the cases when the primary beam is 
formed in a source located at a finite distance from the crystal. In contrast to the 
case of spherical wave approximation, where the primary beam comprises all 
directions about the Bragg direction of this reflection for appropriate atomic planes 
of the lattice, an incident beam of the discussed type induces a wave field that 
considerably depends on the source-to-crystal direction. As a result of this beam 
diffraction in the crystal, two modes are excited in the crystal that correspond to the 
strongly and weakly absorbing modes [2] in the non-deformed crystal. In case of 
weakly deformed crystal the curvature of the trajectories of two mode beams of the 
wave field is negligible [3]. The curvature of trajectories of diffracted X-ray beams 
is due to the gradient of relative deformation of crystal lattice. The validity 
criterion of such an approach is the smallness of alterations of relative deformation 
within the extinction length that is the characteristic length of dynamic diffraction 
of X-rays on the space lattice of crystal. As a result of this assumption the beam 
trajectories prove to be the same as those in the non-deformed crystal, i.e. be 
rectilinear. In case of this approach an additional phase component due to the 
deformation field may be represented as an integral of displacement function 
describing the local deviation from the Bragg condition, taken along the beam 
trajectory.   
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So, consider now a symmetric Laue case with crystal oriented near the Bragg 
condition in regard to the source of primary X-rays when the reflecting planes are 
normal to the incidence surface of the crystal. According to the Kirchoff integral 
formulation of the Huygens–Fresnel principle [4], the quasiamplitudes 0ψ  and hψ   
of crystal wave field, representing the transmitted and reflecting waves, are related 
by influence functions ( , ) ( 0, )jG x z j h=  determining the influence of primary 
radiation ( , )i x zψ ′ ′  in ( , )x z′ ′  point of the plane of crystal incidence surface ( 0)z =  
on the field in observation point ( , )P x z  in the scattering plane:  

( , ) ( , ) ( , ) ,j j ix z G x x z z x z dxψ ψ′ ′ ′ ′ ′= − −∫                               (1)                                        
where the integration is over 0z′ =  section coinciding with the incidence surface 
of the crystal.          

The x-axis of ( , )x z  reference system was taken to be parallel to the 
incidence surface of crystal, and z-axis be directed along the internal normal to that 
surface. Besides that, oblique coordinate axes (s0, sh) shall be also used below with 
axes parallel to wave vectors 0K  and hK  of diffracted waves in the lattice. The 
transition from one reference system to the other is made by means of 
transformations 

                        0 0( )cos , ( )sin ,h B h Bz s s x s sθ θ= + = −                              (2) 
where Bθ  is a Bragg angle.       

Now consider the diffraction of hard X-rays on the space lattice of crystal, the 
displacement field of which is described by the square-law function of coordinates 

0( ) ,hhu r s sα=                                                     (3) 
where h  is the vector of reciprocal lattice of the corresponding reflection. 

The propagation of X-ray wave packages in the lattice is described by wave 
equations that ensue from the Takagi equations. For the reflected beam with 
quasiamplitude hψ  this equation is described in the form: 

2
0 0/ / ( ) 0,h h h hs s i s iψ α ψ σσ α ψ∂ ∂ ∂ − ∂ ∂ + − =                  (4) 

here ( ), , 2 .h hh
n

hu rkc kc k
s

σ π χ σ π χ α π ∂
= = =

∂
 Determines a local deviation 

from the Bragg angle that is due to the lattice deformation, c being the polarization 
factor equal to 1 or cos2 Bθ  for two independent polarization states of the radiation, 

hχ  and hχ  are Fourier coefficients of crystal polarizability for the direct ( )h and 

reciprocal ( )h−  vectors of diffraction respectively, 1/k λ=  being the wave 
number of radiation in vacuum.  

In case of square-law function (3) of the displacement field, Eq. (4) is 
reduced by means of substitution 0 hz i s sα=  to the well-known equation for 
confluent hypergeometrical function [5] 

2 2/ (1 ) / (1 / ) 0,h h hzd dz z d dz iψ ψ σσ α ψ+ − − − =                      (5) 
the solution of which is the Kummer function [6] 1 1( ,1, )F zα :   

( )1 1 01 | / |,1, .h hF i i s sψ σσ α α= −                                      (6) 
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In its turn in case of small deformations, namely for 

1,
i
σσ
α

                                                        (7) 

the solution of (6) has an asymptotic representation [6] 
( )0

0 02 ( ) ,hi s s
h he J i s sαψ σσ α≅ −                                     (8) 

where 0 ( )J Y  is zero order Bessel function of complex argument Y. This solution 
differs from an relevant solution for the perfect (non-deformed) crystal [7] by the 
first phase factor in (8) as well as the term –iα supplementary to parameter σσ  in 
the argument of the Bessel function. Taking into account the second of the Takagi 
equations [4]  

0 ,h
h h

h
i i

s
ψ

σψ α ψ
∂

− = −
∂

                                          (9) 

we have for the amplitude of transmitted wave ψ0 from (8) 

( )0 00
0 1 0( ) 2 ( ) ,h hi s s i s s

h
h

si e i e J i s s
s

α ασψ σσ α σσ α− ≅ − ⋅ −              (10) 

where 1( )J Y  is the first order Bessel function.  
Using the solutions (8) and (10), one can find expressions for the point 

source influence functions ( , )jG x z , as the latter ones are solutions of the 

differential equation conjugate to Eq. (4) with δ-function in the right-hand member 
of the last equation and are known as Green functions of the corresponding 
problem.   

Let the incident monochromatic X-rays be radiated by the point source 
distant from the origin of coordinates ( , , )x y z  at 0 /r k k−  vector, so that the wave 
field of primary beam be described by function 

2

,
ikle

l

π−

                                                    (11) 

where l is distance between a source and the running point on 0z =  surface. Due to 
the small effective domain about the point of origin ( )x l  in observation plane 

0,y l= , this function may be expanded into a series around 0x =  point in the 
well-known parabolic approximation and assuming that 1 r≅  in the denominator 
of (11), we obtain by confining to square-law terms in  x 

2 22 (1 / 2 sin / )2

.
Bikl x r x rikle e

l r

π θπ − + +−

≈                                   (12) 

In the exponent of (12) the term linear in x describes an angular 
displacement from the exact Bragg condition in the respective component of the 
incident beam, where as the square-law term results from the wave front curvature 
of the primary beam. The latter vanishes when r →∞ , that corresponds to 
transition  to the plane wave approximation, and in case of 0r →  the square-law 
term proves to be prevailing and corresponds to the approximation of spherical 
wave of Kato [8]. Thus, owing to the approximation of (12), it proved possible to 
formulate the Huygens–Fresnel principle over the full range 0 r≤ < ∞  of the 
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source-to-crystal distances. Returning to the integral formulation (1) with due 
regard for (8), (10) and (12), the quasiamplitudes 0ψ  and hψ  of the diffracted 
beams shall be replaced by influence functions ( , ) :hG x x z′−   

2 2

2 2

2 2
4 cos sin

0

0

4 cos sin

( , ) ( ) ,
cos cos sin

( , )

cos sin (1

cos sin

B B

B B

i z x x

h
B B B

i z x x

B B

B B

i z x xG x x z e J i

G x x z

z x x
ie z x x

α
θ θ

α
θ θ

σ σσ α
θ θ θ

θ θ α

θ θ

⎛ ⎞⎛ ⎞ ⎛ ⎞′−⎜ ⎟−⎜ ⎟ ⎜ ⎟⎜ ⎟⎝ ⎠ ⎝ ⎠⎝ ⎠

⎛ ⎞⎛ ⎞ ⎛ ⎞′−⎜ ⎟−⎜ ⎟ ⎜ ⎟⎜ ⎟⎝ ⎠ ⎝ ⎠⎝ ⎠

⎛ ⎞⎛ ⎞ ⎛ ⎞′−⎜ ⎟′− = − − −⎜ ⎟ ⎜ ⎟⎜ ⎟⎝ ⎠ ⎝ ⎠⎝ ⎠
′− =

′−
+

= −′−
−

2 2

1) ( ) .
cos sinB B

z x xJ iσσ α
σσ θ θ

⎛ ⎞⎛ ⎞ ⎛ ⎞′−⎜ ⎟− −⎜ ⎟ ⎜ ⎟⎜ ⎟⎝ ⎠ ⎝ ⎠⎝ ⎠

(13) 

With regard to (13) the approximation of incident spherical wave is obtained 
from (1) as a limiting case with ( ,0) ( )i x xψ δ′ ′= , where ( )xδ ′  is the Dirac delta 
function. The wave functions of reflected and transmitted waves will be given 
directly by ( , )hG x z  and 0 ( , )G x z  functions. 

The plane wave approximation ( )r →∞  results as the Fourier-image of 

0, ( , )hG x z  functions and the coefficients of reflection and transmission will be 
determined by analogous formulas with respective factors for perfect (non-
deformed, 0α = ) crystals (see, e.g., [2]) by replacing σσ  by iσσ α− . This fact 
specifies the features of interference absorption (the Borrmann effect). In 
particular, if for the perfect crystal the interference coefficient is determined by the 
imaginary part of σσ  (Im{ })σσ , for weakly deformed crystal the interference 
attenuation of waves will be determined by Im{ }σσ α−  parameter. Here, if the 
first term determines non-coherent losses of wave energy, the second term 
represents the effects of energy transfer from the transmitting to the reflected wave 
and vice versa.  
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