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The paper studies the linear operators depending on normal pair of weight functions
{@,y} in the Banach spaces L”(B). Here B is the unit ball in the complex space C".
In particular, we study the question: for which values of p these operators are bounded
projectors.
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Introduction. The paper is devoted to investigation of some linear operators depend-
ing on a normal pair of weight functions. The concept of a normal pair of weight functions
was first introduced by Shields and Williams [1], and it appeared to be a convenient notion
for statement of the estimates for integrals and for exposition of projectors in weight spaces.

Definition 1. A positive, continuous in [0, 1) function ¢ is called normal, if there are
some constants 0 < € < k and 0 < rg < 1 such that

M decreasesas rp<r<1 and lim o(r) =0,
(1—}”)8 r—1- (1—7‘)8
o) increasesas 1o <r<1 and lim o) _ oo, (1)

(1—r)k 1= (1=r)k
Note that k and € are not uniquely determined by ¢.

Definition 2. A pair of functions {¢, y} is called a normal pair, if ¢ is normal and if,
for some k satisfying (1), there exists & > k — 1 such that

p(Ny(n=>01-2% o<r<l 2)

Note that due to condition o > k — 1 the function y is integrable on the [0, 1). If ot > &,
then also y with the suitable degrees & —k and ¢ — € is normal. The following notation is
used throughout the paper:(z,w) = Y}, zxWi means the inner product of the points z,w € C"
and |z| = \/(z,z) the induced norm.

B={z€C": |z] <1} stands for the open unit ball in C" and S =dB = {z €
€ C": |z] = 1} for its boundary, which is the unit sphere in C". H(B) means the set of
functions holomorphic in B. v stands for the Lebesgue measure of the volume element of C”
normed by the condition v(B) = 1. ¢ stands for the Lebesgue measure of the area element
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on S normed by the condition 6(S) = 1. L?(B) stands the set of all measurable functions f
in B, for which

i1, = [ r@ravi )’<+oo 0<p<e

Spaces A?(y). Below was assumed that {@, y} is a normal pair. We continue ¢ and
y to the whole B as ¢(z) = ¢(|z]), w(z) = w(|z]). For 0 < p < e, ot > —1 consider the
following spaces of functions holomorphic in B:

2w ={r €1 @) Wy = ( [ Irov@rave )" <o},

A= {ren®): 1slpa=( 1100 1 -2 %av(0)" <o)

<IR

Thus, A% is a special case of A?(y), if y is a power function: y(z) = (1 — |z )

Proposition 1. For 1 < p < e, AP(y) are Banach spaces.
It is proved by the same method that in [2], where the case p = 1 is considered.

Now let the mappings

Tp: AP(y) = LP(B), 1< p<ee,
be defined by the equalities 7,(g) = yg. Obviously these mappings are isometries. The
ranges are closed subspaces of L”(B). We use the following notation for the ranges of these
mappings
TAP =T (AP (y)).

Consider the following integral operator:

©N@) =% | Wﬂw)de )
where . Fntat 1)
%= Tt D(a+ 1)

In [1] the boundedness of this operator in the space L' (B) is proved in the case n = 1.
In [2] this result is generalised for arbitrary n, namely the following theorem has been proved:

Theorem A.Operator (3)is bounded in L' (B). Moreover, it is a bounded projec-
tor on the subspace TA'.

The following natural problem arises: for which values of p operator Q is a bounded
projector in LP(B). This paper is devoted to the solution of this problem. The main result
is the Theorem 2. Note that the condition p(k— o) < 1 for boundedness of operator Q is
sufficient, but not necessary. This can be easily seen, as the number & in (1) can be choosen
in many ways of normal function is ambiguous. In the case when weight functions are power
functions, the specified condition is as well necessary. Let ¢(r) = (1 —r)’, w(r) = (1—r)",
a+ b = a. The following result has been proved in [3] (Theorem 2.10):

Theorem B. For two real numbers a > —1 and b > 0 we define two integral
operators:

(1-12P)”

(©NQ) = (1=1a)" [, e £ dv()

and

(Qf)( /|1_ 1_|Zr‘l+l+a+bf( ) V(W).
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For 1 < p < o the following conditions are equivalent:
a) Q is bounded in L”(B);
b) Q is bounded in L”(B);
c) —pa<1.

Auxiliary Lemmas.
Lemma 1. For y> —1and m>1+7 we have

1
/(1_pr)*m(1_r)mrgca_p)l”*m, 0<p<l,
0

where the constant C = C(m,?y) does not depend on p.
For the proof see [1].
Lemma 2. For apositive ¢ > 0

45 011 as B
Sw—o((l 121)7°) 2| =1

For the proof see [3, Theorem 1.12].
Lemma 3. For
—(l+e)<gs<a—k “

there exist a constant M, such that

/ (1 - Mz)L o0v) dv(w) <My 7(1 — |Z|2)qs.
B

1= (zw)[" v(2)

Proof. According to the definition of a normal pair of functions, @(r)y(r) = (1—
—r2)% for 0 < r < 1, so, it will be sufficient to show that

/B ( ‘W|2)ﬁ/l7|1 _ <Z7W>|n+l+a <My (1 B |Z|2)(ﬁ/p)+a.

Letw=r{, where r = |w|, { €S. As oc+ 1 > 0, then, due to Lemma 2, there exists a
constant C such that

/ do(¢) o C
s [1—(z, ”C>|n+1+a = (1— (|Z|V)2)a+1 )
Expressing the normed volume element dv in polar coordinates, we get

dv(w) =2nr"""Ydrdo({), w=r{, where { €S

(see [3], Lemma 1.8), hence,

[UREZ00) ) -

B ‘1 _ <Z’W>|n+1+05

_ ! _ 2nl
_2n/0 (1-")"¢ /ll—er e | dr < ®

L (1=r)" o(r) (1-r)"o(r)
C/() (— (jl\/0 ————2dr

dr
1= ([z]r)2)**! (1= [g]r)**!

N

~
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(in the last step we have replaced (1 —r?) by (1 —r) and (1 —(|z[r)?) by (1—|z|r), so, we
have changed C to some other constant Cy).
We divide the last integral into three parts:

=0T, _ 0=n"ew)
/ (1—|z[r )aHd /0 (1f|z|r)°‘+1d+
‘ZIM . 1% a
+/’:0 ( *|Z‘ )OH—ld +/‘Z‘ (17|Z| )OH—ld L+bL+15. (6)

Obviously /; is bounded for all z. Therefore, there exists a constant C, such that

S— 1- )"
L <Go) (1-]P)" " <M°(w|(zz|))

here we have used the fact that gs — a 4k < 0, so, the right-hand side of (7) is away zero, and
also that @(z)y(z) = (1 — |z|2)a . From the definition of normal function (1) we have

. @)

o(r) ®(z)
(—nF S (- []F

for ro<r<|z. 3
Therefore,

(1 l2l | — p)ktas 2l (1 —p)kte
_/ 2 a+l) dr:/ (P(r)k( 2 arTdr < P k/ (d=r) aTdr
—|z|r) Jrg (L=r) (1 —zlr) (1—z))* Jro (1= 1z]r)
From (4) we getk+¢gs > €+qgs > —1, o+ 1 > k+¢gs+ 1, and, taking into account Lemma
1, we have

l2l (1= k-+qs 1 (1 — p)ktas
/ ( r) dr</ (( r) dr<C3(1_|Z|)k+qsfa
7 0

o (1|2l 1 [zlr)**!

for some constant C5. Therefore,

0@ [T U= )
R GEF ), T S OT g e
e
<aww0—m%w“:a“¢£9'

To estimate I3, we use the inequality.

o(r) 0(z)
(- S (T—Je)E

for |z <r<1. )

Then

=0Tl P e(-nf
R B Ul I e e
R o) [ (-
J <o b T

< r<
A=) Dl (1= 2@~ (1= [])F )t
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By (4), wehave e4-¢gs > —land ¢ +1 > k+gs+1 > €+¢gs—+1, so, using Lemmal we get

L (1=r)fe .
7dV<C 1-1z €+qs a7
| oo pgerdrs G-k

hence,

o) [ (-
7

L < <
3 (1_‘Z| 1_‘Z|r)a+l
<G50 (1= D" <Cop(e) (1-17)"7, (10)

with some constants Cs and Cg. Combining the obtained results (5)—(10), we get that there
exist a constant M such that

(1=wP)*" o(w) a5 (1-z»)*
2 adv(w) < Mop(z) (1 -]z =My———
o 4700 < Mo9(0) (1 f) V)
for —(1+¢€) < gs < a—k. The Lemma is proved. O
Lemma 4. Let
k—o—1<ps<e. (11)

Than there exists a constant M such that

[UZEDTWE gy < o U
B

‘1 _ <Z’W>‘n+1+o¢ ~ ¢(W)

Proof. We have ¢(2)y(z) = (1—z]?) %, Therefore, it is necessary to prove that

(1-]e?)"™" (="
/ o)1= (e VST

for some constant M;. As in the proof of the previous lemma, we pass to polar coordinates,
apply the Lemma 2, split the obtained integral into three parts and estimate each part sepa-
rately. Here we must take in account that instead of inequalities (8) and (9) it is necessary to
use inequalities

(1=nf _ (I=|w)®

for ro<r<|w|,

o)~ ow)
1—r)k _ (1—|w))*
(1-1) < (1= [wD) for |w|<r<l.
¢(r) P(w)
The remaining arguments are similar to the proof of the previous Lemma, with minor
alterations, and we omit the details. O

The Main Result. The following Schur’s test is a useful tool to prove the
L?- boundedness of operators.
Theorem 1. (Schur’s test) Suppose (X, 1) is a measure space, | < p < e and

1 1
— + — = 1. For a nonnegative kernel H(x,y) consider the integral operator
q

(SH0) = | H)fO)du().
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If there exist a positive function 4 on X and a positive constant C such that

[ Hh)au() < Chloy

for almost all x € X and i
[ Hy)rdu) < chiy)”
X

for almost all y € X, then the operator S is bounded in L? (X, 1) with ||| < C.
For the proof see [4], (Theorem 1.8) or [3], (Theorem 2.9).
Theorem 2. Forall p, 1 <p <o, with

plh—a) <1, (12)

the integral operator

(0f)(2) =

C(n+1DC(a+1) J (1— (z,w)) T

is a bounded projector in L?(B).
Proof. First of all we will prove boundedness Q. First consider the case 1 < p < oo, It
is enough to prove boundedness of the following operator with positive kernel:

($9)6) = [, = e o) avi), (14

since from the boundedness (14) the boundedness of (13) follow immedietly. According to
the Schur’s test, it would be sufficient to find suitable function %, for which the inequalities

v()e(w)
/B|1_<ZW>|+1+ h(w)?dv(w) < Mh(z)",

/ _ V@M rav(z) < Mi(w)?
B|1—(z,

W>|n+l+a

are fulfilled. We look the function 4 in the following form: /(z) = (1—|z[*)’. That is, we
need to prove that

(1= )™ p(w) (- )"
T e ) <M =

e (- R () (1— )™
./B|1_<Z7W>|n+l+a v(z) < o) (16)

for some 5. According to Lemmas 3 and 4, the inequalities (15) and (16) are true under the
conditions

1+¢ a—k k—o—1 €
— <s< and —— <s< —
q q p p

with M = max {My, M, }. It is only necessary to determine for which values of p the intersec-

tion of intervals
( 1+¢ a—k) (k—a—l e)
- — and _ =
q q p p
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1+¢ ¢
is nonempty. Obviously _1te < —. Therefore, indicated intersection is nonempty, if and
q
k—o—1  o—k 1
only if < . As — =1——, wereceive p(k— o) < 1. That s for p(k— a) < 1
p

(1 < p < ) the operatc(])r (14) isqboundecll7 in LP(B).

The statement of the Theorem for the case p = 1 follows from the Theorem A. Indeed,
the condition (12) in this case is equivalent to condition o¢ > k — 1 for normal pair {¢, y}
(see Definition 2).

Now we prove that P is projector. The range of Q,obviously belongs to TA?. We show,
that on TA? the operator Q is identical. Let f € TAP. Then f = yg, where g € A”(y). We
have Q(yg) = Py(g) = g. Here P, denote the integral operator (17), which is defined below.
The equality Py (g) = g follows from the fact that A” (y) C A'(y) C AL, and that in the space
A}, the kernel K¢ (z,w) is reproducing.

The Theorem is proved. 0

Note that the case n = 1 of Theorem 2 is considered in [5].

Corollary 1. For all 1 < p < oo, ¢t > 0, the Bergman type integral operator

T(n 1 1— w2
(Poyf)(z) = F(nij)?&ﬁ])/lg(1£<Z’W>)n)ﬂ+a Fw)dv(w) 17)

is a bounded projektor in L?(B).
Proof. Consider the particular case when ¢ is power function: ¢(r) = (1 —r)%*, where
o > 0 and y(r) = 1. Then the corresponding operator Q has the form (17). For any given
1 < p < oo s possible to find a number k > « satisfying to the condition (12) of Theorem 2.
Note that the statement of Corollary 1 follows also from Theorem B at a = 0, and also
from Rudin—Forelli theorem [6].
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