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In the present work the optimal stabilization problem of a moving mass center 
of satellite under influence of integrally small perturbations during finite time 
intervals has been considered. The optimal stabilization problem of the above 
motion in classical sense and under integrally small perturbations is assumed and 
respectively solved. A comparison between the optimal values of performance 
indices in mentioned cases proves that the energy consumption at stabilization 
under integrally small perturbations is less than stabilization in classical sense. 
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Introduction. In optimal control problems a task is set of finding a control 

law for a given system such that a certain optimality criterion is achieved. A 
control problem includes the determination of a performance index that is a 
function of state and control variables. An optimal control is a set of differential 
equations describing the paths of control variables that minimizes the performance 
index. 

In addition, the stability analysis and stabilization of nonlinear systems are 
among important and extensively studied problems in the control theory. The 
Lyapunov function based method played an important role in providing solutions 
to these problems. 

In the present paper the optimal stabilization problem in the mass centrе of 
satellite in motion in the classical sense and under integrally small perturbations is 
raised and respectively solved. Finally the results of mentioned solutions were 
compared. 

Differential Equations of Perturbed Motion of the Mass Centrе of 
Satellite. The optimal stabilization problem under integrally small perturbations 
has been studied for dynamical systems. In the case of obtained sufficiency conditions  
there is a solution for the problem of optimal  stabilization for  such systems, and 
an algorithm has been constructed for not fully controllable linear systems [1]. 

Let consider of perturbed motion of mass center of satellite assuming that 
the satellite is affected only by the Earth gravity. The reduced resultant force F, 
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applied to the mass center of satellite [2], is determined by the universal law of 
gravitation 

2/ ,F m r                                                       (1) 

where 2gR fM   is the standard gravitational parameter of the Earth ( R  is the 
radius; g  is the gravitational accelera-
tion at the Earth surface; M is the Earth 
mass; f  is gravitational constant); 
r OC  is the distance from the center 
of Earth O  to the mass center of 
satellite ;C  m  is the satellite mass. 

We consider the steady motion of 
the mass center of satellite in a circular 
orbit of radius 0r  lying in   plane. The 
motion of this kind is also called the 
stationary steady motion of satellite 

(Fig. 1).  The defined parameters of the steady motion of satellite must satisfy the 
following condition that directly follows from the Newton’s second law: 

2 3 2 2
0 0 0( / ),r mr m r                                             (2) 

where const    is the angular velocity of satellite rotation with radius vector 

0r  at the steady motion. 
Now consider this satellite motion under influence of some perturbations 

(that is equivalent to satellite separation from the rocket at the last stage along with 
slight change of conditions that should ensure the motion of satellite in a circular 
orbit of radius 0r  in π plane). As a result of imposed perturbations the motion of 
satellite shall be perturbed, in particular, changing the orbit to a non-circular in a 
plane other than in π plane and rotational angular velocity   of the radius vector 

being not equal to 3
0/ r . 

To set up the equations of perturbed satellite motion, a reference system 
Oxyz  is constructed, the coordinate plane xy , of which is adjusted to the orbital 
plane of steady motion, i.e. to the π plane. The centrе of gravity of the satellite C  
in the perturbed motion will be defined by the spherical coordinates , ,r    (Fig. 1). 

By setting 0r r x   and ,y    we obtain the equations of perturbed 
motion of satellite (the equations for   and   are similar) [2]. 

For generality, a new notation 1,x x  2 ,x x  3 ,x   4 ,x   5y x  is 
introduced and the differential equations of perturbed satellite motion in the first 
approximation are:  

2 2
1 2 2 1 0 5 3 4 4 3 5 0 2, 3 2 , , 2 , ( 2 / ) .x x x x r x x x x x x r x                     (3) 

The above equations were derived with due regard for the equality in (2).  
Formulation and Solution of Optimal Stabilization Problem in the 

Classical Sense. For investigation of stability by means of Lyapunov indirect 
method, the differential equations of above motion are taken to form a system of 

Fig. 1.   Steady motion of the mass center of 
satellite. 
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differential equations (3), and the characteristic equation for this system of 
differential equations is as follows: 

2
0

1
2

0

0 1 0 0 0

3 0 0 0 2
0 0 0 1 0 .

0 0 2 0 0
0 2 / 0 0 0

r
A

r

 




 
 
 
 
 
  
  

                                (4) 

The eigenvalues of 1A  will be 

1 2,3 4,50, , 2 .i i                                         (5) 

So, the system is marginally stable in the Lyapunov sense, but unstable 
under integrally small perturbations [3]. 

Let consider the input controls 1u  and 2u  in the   and   generalized 
coordinate directions respectively, then first approximation of differential 
equations of the perturbed motion of satellite are obtained 

2
1 2 2 1 0 5 3 4

2 2
4 3 1 0 5 0 2 2 0

, 3 2 , ,

2 ( / ), (2 / ) ( / ).

x x x x r x x x

x x u r x r x u r

 

 

    


     

  

 
                       (6) 

At the derivation of above equations the equality in (2) was taken into 
account. 

Now make the following notations: 

1 0 1 2 0 2 3 3 4 0 4 5 0 5(1 ) , ( 1 ) , , ( ) , ( ) .y r x y r g x y x y r g x y r g x                (7) 
Then, the system is written in a dimensionless form 

1 2 2 1 5 3 4 4 3 1 5 2 2, 3 2 , , 2 , 2 .y ay y by y y ay y by u y y u                     (8) 
Here 

1 1 0 2 2 0

0

/ , , /( ), /( ),

(1/ ) / , 1/ .
i iy dy dt t t u u r g u u r g

a g r b a

  



    

 


              (9) 

The system of differential equations (8) is fully controllable as 
2 3 4

2 2 2 2 2 2 2 2 2rank rank , , ,  , 5,K B A B A B A B A B                           (10) 
where 

2 2

0 0 0 0 0 0
3 0 0 0 2 0 0

, .0 0 0 0 0 0
0 0 2 0 0 1 0
0 2 0 0 0 0 1

a
b

A Ba
b

   
   
   
    
      
      

                             (11) 

The problem of optimal stabilization of the system is solved when 
minimizing the performance index 

5 22 2

1 10
[ ] .i k

i k
J u y u dt



 

   
 
                                        (12) 
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Let set up an expression 
5 5 2

2 2

1 1 1
[ ] ,i i k

i i ki

V VB u y y u
t y  

 
   
 

                                 (13) 

then, since the expression in (13) at optimal control takes the minimum value equal 
to zero [4, 5], 

0
0 0

1 2 3 4 5 1 2

2 1 5 4 3 1
1 2 3 4

2 2 2 2 2 02 02
2 2 1 2 3 4 5 1 2

5

0, [ , , , , , , , ]

( ) (3 2 ) ( ) ( 2 )

( 2 ) 0

u uB B V y y y y y u u

V V V Vay by y ay by u
y y y y
V y u y y y y y u u
y


 

   
       
   


          


            (14) 

and 

0
0 ( 1,2) ,

i iu u

B i
u 


 


                                          (15) 

where 1 2[ ]Tu u u  and 0
iu  are optimal controls. 

For Lyapunov function we will search the solution in the following form: 

, 1,2,5 , 3,4

1 1 ,
2 2ij i j ij i j

i j i j
V c y y c y y

 
                                      (16) 

where ijc  are constants. 
From equation (15) we obtain 

0 0
1 4 2 5/ 2 ; / 2 .u V y u V y                                       (17) 

Substituting the values 0
iu  from equation (17) in (13), considering the 

equations (14) and (16), a set of equations for determination of ijc  constants is 
obtained  

2
15 15 25 25 15 5511 22

12 15 12

2 2
25 15 25 55 34

12 25 22 55 34

22
33 34 44 5544

44 34 25

333 +1 0, 0, 0,
4 2 2 4 2 4

c 2 1 0, 0, 2 1 0,
4 2 4 4

0, 1 0, 2 1 0.
2 4 4 4

c c c bc c cac bcbc c c

c ac c c c
a c c c bc

ac c c ccbc ac c


        




           



        


   (18) 

Solving these equations at 1 2
00.001 ; 9.81 ; 7000000s g m s r m       

we get the solution that satisfies the conditions of the optimal stabilization 
problem: 

11 12 15 22 25

33 34 44 55

27.096; 13.019; 11.661; 8.131; 5.036;
4.258; 0.548; 2.568; 6.655.

c c c c c
c c c c

    

   
       (19) 

Thus, optimal Lyapunov function will have the form 
0 2 2 2 2 2

1 5 1 2 3 4 5

1 2 1 5 2 5 3 4

( ,..., ) 13.548 4.068 2.129 1.284 3.328
13.019 11.661 5.036 0.548

V y y y y y y y
y y y y y y y y

     

   
      (20) 
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and optimal controls will be 
0 0
1 3 4 2 1 2 50.274 1.284 , 5.830 2.518 3.328 .u y y u y y y              (21) 

For the optimal value of performance index in equation (12) we obtain 
0 0 2 2 2 2

10 50 10 20 30 40
2
50 10 20 10 50 20 50 30 40

( ,..., ) 13.548 4.068 2.129 1.284

3.328 13.019 11.661 5.036 0.548 ,

J V y y y y y y

y y y y y y y y y

     

    
     (22) 

where 0 (0), 1,...,5i iy y i  . 
Formulation and Solution of Optimal Stabilization Problem Under 

Integrally Small Perturbations. Let consider the input controls 1u  and 2u  in the 
  and r  generalized coordinate directions respectively, then first approximation 
of differential equations of the perturbed motion of satellite are obtained: 

2
1 2 2 1 0 5 2 3 4

2
4 3 1 0 5 0 2

, 3 2 , ,

2 ( / ), ( 2 / ) .

x x x x r x u x x

x x u r x r x

 

 

     


    

  

 
                          (23) 

Let use notations of equations (7) and write the mentioned system with 
dimensionless sizes 

1 2 2 1 5 2 3 4 4 3 1 5 2, 3 2 , , 2 , 2 .y ay y by y u y ay y by u y y                   (24) 
Here 

1 1 0 2 2 0

0

, , ( ), ( ),

(1 ) / , 1/ .

i
i

dyy t t u u r g u u r g
dt

a g r b a

  



   


 


               (25) 

Let replace the following problem. 
Finds such input controls 0

1u  and 0
2u , which will ensure the stability of the 

solution yi=0 (i=1,…,5) of the system of differential equations (24) under  
integrally small perturbations and will minimize the performance index. 

The system (24) is not fully controllable as 
2 3 4

1 3 3 3 3 3 3 3 3 3rank rank[ , , , , ] 4,K B A B A B A B A B                           (26) 
where 

3 3

0 0 0 0 0 0
3 0 0 0 2 0 1

, .0 0 0 0 0 0
0 0 2 0 0 1 0
0 2 0 0 0 0 0

a
b

A Ba
b

   
   
   
    
      
      

                                 (27) 

As the system (24) is not fully controllable, hence, the optimal stabilization 
problem for the system is not solved in the sense of [5]. 

Since the linear transformation does not change the eigenvalues of the 
matrix, the characteristic equation corresponding to system of differential equations 
(24) has one zero root. It means that the system (24) admits the first integral. It is 
known [6], that in this case it is possible with help of nonspecial linear 
transformation 1 2 1 2(det 0, [ ... ] , [ ... ] )T TZ CY C Z z z Y y y    , 



Rezaei Masoud   Problem of Optimal Stabilization Under Integrally Small Perturbations...  
  

39

1 1 2 5 2 1 2 5 3 3 4 4 5 1 53 2 , 3 2 , , , 2z by y y z by y y z y z y z by y             (28) 
to reduce the system (24) to the form of 

1 2 2 2 1 2 3 4 4 3 1 5, , , 2 , 0.z z u z z u z az z bz u z                        (29) 

For system of differential equations (29) the optimal stabilization problem 
may be solved under integrally small perturbations [1]. The minimized 
performance index shall be adopted in the form of 

4 22 2
1

1 10
[ ] .i i

i i
J u z u dt



 

   
 
                                         (30) 

Thus, for system (29) it is required to resolve the optimal stabilization 
problem under integrally small perturbations, while minimizing the performance 
index in (30). 

Now let write the expression of Bellman for the system (29): 

2 2 1 2 4 3 1
1 2 3 4

2 2 2 2 2 2
1 2 3 4 1 2

[ ] ( ) ( ) ( ) ( 2 )

.

V V V V Vu z u z u az bz u
t z z z z

z z z z u u

    
          
    

     

B
    (31) 

Since at optimal control the expression in (31) takes the minimum value 
equal to zero [1], then we obtain 

0 0
1 4 2 1 2/ 2 ; / 2 / 2 .u V z u V z V z                                (32) 

By substituting equation (32) into (31), we obtain 
2 2 2 2

2 1 4 3 1 2 3 4
1 2 3 4

2 2

4 1 2

[ ] ( ) ( ) ( ) ( 2 )

1 1 .
4 4

V V V V Vu z z az bz z z z z
t z z z z

V V V
z z z

    
           
    

     
          

B

  (33) 

For Lyapunov function we will search the solution in the following form [1]: 
  2 1 0, ( ) ( , ) ( ) ,V t z V z V t z V t                                       (34) 

where V2(z) is the quadratic form with constant coefficients; V1(t, z) is the first 
degree form with respect to z with time dependent coefficients; V0(t) is the function 
of time. Substituting equation (34) into (33), we can write after some simple 
transformations  

01 2 1 2 1
2 2 1 1

1 1 2 2

2 1 2 1
4 4 3 3

3 3 4 4

2 2 2 2 02 1
1 2 3 4

4 4

( )( , ) ( ) ( , ) ( ) ( , )( ) ( ) ( ) ( )

( ) ( , ) ( ) ( , )( ) ( ) ( 2 ) ( 2 )

( )( ) ( , )1
4

V tV t z V z V t z V z V t zz z z z
t t z z z z

V z V t z V z V t zaz az bz bz
z z z z

V tV z V t zz z z z
z z z

    
       

     
   

      
   

 
      

  

2

4

2
0 02 1 2 1

1 1 1 2 2 2

( ) ( )( ) ( , ) ( ) ( , )1 0.
4

V t V tV z V t z V z V t z
z z z z z z

 
 

 

     
             

   (35) 
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Based on definitions of functions 2 1 0, , ,V V V  we have 1 0 0,V V   and 
equation (33) will be 

2 2 2 2
2 1 4 3

1 2 3 4
2 2

2 2 2 2 2 2 2
1 2 3 4

4 1 2

( ) ( ) ( ) ( )( ) ( ) ( ) ( 2 )

( ) ( ) ( )1 1 0.
4 4

V z V z V z V zz z az bz
z z z z

V z V z V zz z z z
z z z

   
     

   

     
               

             (36) 

For function V2(z) we can search the solution in the form   

 
2 4

2
, 1 , 3

1 1 .
2 2ij i j ij i j

i j i j
V z c z z c z z

 
    

Then the system of equations for ijc  constants determination will be 
2

11 12 11 11 12 12 22 22
12

22
3412 22

12 34

2
33 34 44 44

44 34

( ) ( )( )1  0, 0,
4 2 4 2

( ) 1 0, 2 1 0,
4 4

a
0, 1 0.

2 4 4

c c c c c c c cc

cc cc bc

c c c cbc ac

   
      

 

      



    


      (37) 

So, the solution of the mentioned system at r0=7000000 m; ω=0.001 1s  will be 
11 12 22 33 34 443.275; 0.681; 1.810; 4.258; 0.548; 2.568.c c c c c c         (38) 

Thus, optimal Lyapunov function will be 
 0 2 2 2

1 2 3 4 1 2 3

2
4 1 2 3 4

, , , 1.637 0.905 2.129

1.284 0.681 0.548 ,

V z z z z z z z

z z z z z

   

  
                   (39) 

and optimal controls will be 
0 0
1 3 4 2 1 20.274 1.284 , 1.2974 0.565 .u z z u z z                     (40) 

We obtain for the optimal value of performance index in equation (30):  

 0 0 2 2 2 2
1 10 20 30 40 10 20 30 40

10 20 30 40

, , , 1.637 0.905 2.129 1.284
0.681 0.548 ,

J V z z z z z z z z
z z z z

     

 
      (41) 

where 0 (0), 1,..., 4i iz z i  . 
As the small vibrations of the integral acting on the system are unknown, it 

means that within the given interval they have their influence, and  it is impossible 
to select u control in its optimal way. That is why the optimal controls 0

1u  and 0
2u  

obtained in the result of the problem solution are constructed beginning from the 
moment 0 0.t   

Results and Discussion. The value of performance index (12) at the usual 
stabilization in equation (22) is obtained. 

In addition, taking into account the transformation Z CY  in (28) and the 
optimal value of performance index in (41), the value of performance index at 
stabilization under integrally small perturbations is as follows: 
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0 0 2 2 2 2
1 10 50 10 20 30 40

2
50 10 20 10 50 20 50 30 40

( ,..., ) 20.703 1.861 2.129 1.284

12.892 3.710 32.678 2.928 0.548 ,

J V y y y y y y

y y y y y y y y y

     

    
  (42) 

where 0 (0), 1,...,5.i iy y i   
Conclusion. Based on comparison of the values of performance indices in 

equations (22) and (42) it is proved that 00
1 JJ  . 

It was shown that the energy consumption at the stabilization in the sense 
given in [4, 5] is more than at stabilization under integrally small perturbations. 
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