
PROCEEDINGS OF THE YEREVAN STATE UNIVERSITY

Physical and Mathematical Sciences 2013, № 3, p. 49–56

I n f o r m a t i c s

ON TERMINATION OF FUNCTIONAL SYMBOL-FREE
LOGIC PROGRAMS

S. A. KHACHATRYAN ∗

Chair of Programming and Information Technologies YSU, Armenia

The present article is devoted to the termination of logic programs, which
do not use functional symbols (FSF programs). A program P is terminating
with respect to a goal G, if the SLD-tree of P and G is finite. In general, FSF
programs are not terminating. A transformation is introduced, by which any
FSF program is transformed into another, not FSF program, which is shown to
be terminating with respect to the permitted goals of the original program. The
program obtained via transformation and the original program are ∆-equivalent.

Keywords: logic programming, termination, functional symbol-free logic
programs, transformation.

1. Introduction. Termination of logic programs is of course of utmost
importance. The question whether the top-down evaluation of a goal G terminates
with respect to (wrt) a logic program P is actually underspecified, given the fact that
this evaluation may depend on the selection of atoms from goals and on the choice of
the program clauses. In this paper termination is considered in the strong sense, i.e.
irrespective of the selection of atoms in the goal and of the choice of program clauses.
This is the most demanding notion of termination. Less demanding approaches are:

(1) termination for a fixed selection rule and for any choice of program clauses;
(2) termination for some selection rule, depending on P and G, and for any

choice of program clauses.
The approach under (1) is taken by Plumer in [1] and applies to Prolog in the case
that the leftmost selection rule is adopted. The approach under (2) is taken by Ullman
and van Gelder [2] and applies to a system like NAIL!

In [3] it is shown that termination issue for arbitrary logic programs is not
solvable. Thus, it seems appropriate to study specific cases of logic programs.

We study termination of logic programs that do not use functional symbols of
arity ≥ 1 (henceforth referred to as FSF programs).

A decidable interpreter is known to exist for FSF programs [4]. However, in
general, FSF programs are not terminating.

∗ E-mail: suren1525@gmail.com

50 Proc. of the Yerevan State Univ., Phys. and Math. Sci., 2013, № 3, p. 49–56.

The technical tool we shall use is called level mapping by Cavedon [5], who
studied various classes of logic programs with negation. Level mapping is a function
assigning natural numbers to variable-free atoms.

In [6] it is shown, that if a logic program is recurrent, i.e. if the heads of
variable-free instances of program clauses have higher levels than the atoms occur-
ring in the body of the same instance, then it is terminating with respect to bounded
goals, i.e. goals whose instances are below some fixed level.

We present a transforming algorithm, by which any FSF program is trans-
formed into a ∆-equivalent recurrent program and show that it is terminating with
respect to permitted goals.

2. Notations and Background. Consider three non-intersecting sets Φ, Π

and X . Φ is a set of functional symbols each possessing an arity. For any n ≥ 0, Φ

contains a countable number of symbols of arity n. Π is a set of predicate symbols
each possessing an arity. For any n ≥ 0, Π contains a countable number of symbols
of arity n. X is a countable set of variables. Terms are composed of elements of sets
Φ and X . The atoms are defined as usual [7]. A formula of the first-order predicate
logic with equality over logical operations ¬,∨,∧,→,↔ and quantifiers ∃ and ∀ is
defined conventionally [7].

A ground term is a term not containing variables. Similarly, a ground atom is
an atom not containing variables. The Herbrand universe U is the set of ground terms
and the Herbrand base B is the set of ground atoms. A Herbrand interpretation I
is a subset of the Herbrand base. The value of a closed formula F in interpretation I
is defined as usual. A closed formula F is a logical consequence of interpretation I
(I |= F), if I is a model of F . For closed formulas F and G the relation F |= G means
that every Herbrand model of F is a model of G too.

A program clause is a construct of the form A← B1, . . . ,Bm, where m ≥ 0,
B1, . . . ,Bm and A are atoms. The atom A is called the head and the sequence of atoms
B1, . . . ,Bm the body of the clause. In case of m = 0, the clause is called a fact and is
denoted as A. Intuitively, a clause A← B1, . . . ,Bm is to be interpreted as the formula
∀(B1 ∧ . . . ∧Bm→ A).

A logic program is a finite set of program clauses.
A goal is a construct of the form←C1, . . . ,Ck, where C1, . . . ,Ck are atoms. A

goal, in which the sequence C1, . . . ,Ck is empty, is called an empty goal. Intuitively,
a non-empty goal←C1, . . . ,Ck is to be interpreted as the formula ∃(C1∧ . . . ∧Ck).

A substitution θ = {x1/t1, . . . ,xn/tn} is a finite set of pairs of variables and
terms, where ti is distinct from xi and the variables x1, . . . ,xn are also distinct. A
simple expression is either a term or an atom. If E is a simple expression, then the
instance of E by θ , denoted by Eθ , is the simple expression obtained from E by
simultaneously replacing each occurrence of the variable xi in E by the term ti, where
i = 1, . . . ,n. If Eθ is ground, then Eθ is called a ground instance of E. The compo-
sition of substitutions is defined traditionally [7]. If W ={E1, . . . ,En} is a finite set of
simple expressions and θ is a substitution, then Wθ denotes the set {E1θ , . . . ,Enθ}.
Let W be a finite set of simple expressions. A substitution θ is called a uni f ier for

Khachatryan S. A. On Termination of Functional Symbol-Free Logic Programs. 51

W , if Wθ is a singleton. A unifier θ is called a most general uni f ier (mgu) for W , if
for each unifier σ of W there exists a substitution γ such that σ = θγ .

If S is a program clause of the form A← B1, . . . ,Bm, m ≥ 0, then Sθ denotes
the clause Aθ ← B1θ , . . . ,Bmθ . If G is a goal of the form←C1, . . . ,Ck, k > 0, then
Gθ denotes the goal←C1θ , . . . ,Ckθ .

We will denote the set of variables occurring inside a simple expression E by
Var(E). The set of variables of a program clause S of the form A← B1, . . . ,Bm we
will denote by Var(S) and define as Var(S) =Var(A)∪Var(B1)∪·· ·∪Var(Bm).

The set of variables of a goal G of the form ← C1, . . . ,Ck we will denote by
Var(G) and define as Var(G) = Var(C1)∪·· ·∪Var(Ck).

Let G be a non-empty goal ← C1, . . . ,Ck and S be a clause A← B1, . . . ,Bm.
Then the goal G

′
is obtained by SLD-resolution from G and S, if:

1. Var(G)∩Var(S) = /0.

2. Ci and A are unifiable, where Ci is an atom (called the selected atom) in G,
1≤ i≤ k.

3. G
′

is the goal ← C1θ , . . . ,Ci−1θ , B1θ , . . . ,Bmθ , Ci+1θ , . . . ,Ckθ , where
θ = mgu(Ci,A).

The choice of the selected atom is performed by what is called a selection rule.
G
′
is called an SLD-resolvent of G and S.

Let P be a program and G be a goal. An SLD-derivation of P∪{G} is a (finite
or infinite) sequence G0,G1, . . . of goals such that G0 = G, and each Gi+1 is obtained
by SLD-resolution from the goal Gi and a clause of P (i≥ 0).

Let P be a logic program and G a goal. An SLD-tree of P and G is a tree
satisfying the following conditions:

1. Each node of the tree is a (possibly empty) goal.

2. The root node is G.

3. Let ← C1, . . . ,Ck (k ≥ 1) be a node in the tree and suppose that
Ci is the selected atom. Then for each clause A ← B1, . . . ,Bm, m ≥ 0, in
P such that Ci and A are unifiable with mgu θ , the node has a child
←C1θ , . . . ,Ci−1θ , B1θ , . . . ,Bmθ , Ci+1θ , . . . , Ckθ .

4. Nodes which are empty goals have no children.

To every branch of an SLD-tree there corresponds an SLD-derivation.
A program P is terminating with respect to a goal G, if the SLD-tree of P and

G is finite.
Each program P has a corresponding permitted set of goals, which is denoted

by ∆(P). P1 and P2 programs are ∆-equivalent, if ∆(P1) = ∆(P2) and for any goal
G ∈ ∆(P1), P1 |= G, if and only if P2 |= G [9].

We will denote by ΠP the set of predicate symbols used in logic program P.

52 Proc. of the Yerevan State Univ., Phys. and Math. Sci., 2013, № 3, p. 49–56.

3. FSF Logic Programs. For an FSF program P, a goal is permitted, if it uses
predicate symbols only from ΠP.

We will say that atom A precedes atom B (A 4 B), if there exists a substitution
θ such that Aθ = B. It is easy to see that the relation 4 is transitive and reflexive.

We will say that atoms A and B are congruent (A ≡ B), if A 4 B and B 4 A.
It is easy to see that the relation ≡ is an equivalence relation. Congruent atoms are
considered identical.

Definition 3.1. For a clause S from logic program P we define a set of atoms
H(P,S) = {Aθ |A is the head of S and the substitution θ uses constants only from
program P}.

L e m m a 3 . 1 . For a clause S from FSF program P

H(P,S) =
{

∏
k
j=1 (l + j), if k > 0,

1, if k = 0,

where k (k ≥ 0) is the number of distinct variables in the head of S, and l is the
number of distinct constants used in program P.

Proof. Denote by A the head of the clause S. Then H(P,S)=A, when k = 0.
Thus, H(P, S) = 1. Now let us assume that Var(A) = {x1, . . . ,xk}, k > 0. The cor-
responding term for the variable x1 in substitution θ is a constant from P or a variable.
The number of these terms is l + 1. The corresponding term for the variable x2 in
substitution θ is a constant from P or a variable used for x1 or another variable. So,
the number of these terms is l+2. And for x3, . . . ,xk the number of the corresponding
terms will be l +3, . . . , l + k.

As a result, the number of distinct substitutions for atom A, which use func-
tional symbols only from program P will be ∏

k
j=1 (l + j).

Definition 3.1. For a logic program P we define a set of atoms H(P) as follows:
H(P)=H(P, S1)∪H(P, S2)∪·· ·∪H(P, Sn), where S1,S2, . . . ,Sn are the clauses of P.

It is easy to see that H(P)≤ ∑
n
i=1 H(P,Si).

We denote a tuple of elements 〈d1, . . . ,dk〉, k ≥ 0, by d and write di ∈ d, if di

is the i-th element of the tuple d.
Definition 3.2 (Trans2 transformation). Let P be an FSF program. For the

program P we construct a program P′ as follows:
1. instead of every clause S of the form p(t)← p1(t1), . . . , pm(tm) ∈ P, m≥ 0,

we define a clause:

pT (t,s(z))← pT
1 (t1,z), . . . , pT

m(tm,z), called Trans(S);

2. for every predicate symbol p ∈ΠP we define a clause as follows:

p(x1, . . . , xk) ← pT (x1, . . . ,xk,sh(0)), called Depth(p),

where h = H(P), {z}∩Var(S) = /0, the variables x1, . . . ,xk are distinct, s is a func-
tional symbol of arity 1, pT , pT

i /∈ ΠP (0 ≤ i ≤ m), k is the arity of p, and 0 is a
constant.

From the 1st point of Trans2, for each clause of program P a new clause is
defined, which has the same structure as the original one, but with the new predicate

Khachatryan S. A. On Termination of Functional Symbol-Free Logic Programs. 53

symbols having one more arity. The last parameters of the atoms defined with new
predicate symbols are used for defining levels. These last parameters are added as
constraints. From the 2nd point of Trans2, for each clause of program P a new rule
is defined, which initializes the level of the head of that clause.

To prove the termination of the transformed programs the following notions,
introduced by Bezem [6], will be needed.

Definition 3.3 (level mapping). A level mapping is a function || : B→ N from
the Herbrand base to the set of natural numbers N. For an atom A ∈ B, |A| denotes
the level of A.

A level mapping is only defined for ground atoms. The next definition
extends the mapping to cover non-ground atoms. We denote by ground(A) the ground
instances of the atom A.

Definition 3.4 (bounded atom). An atom A is bounded wrt ||, if there exists
k ∈ N such that for every A

′ ∈ ground(A), |A′ | ≤ k. If A is bounded, then |A| denotes
the maximum value of || takes on ground(A).

Definition 3.5 (bounded goal). A goal G of the form←C1, . . . ,Ck is bounded
(wrt ||), if every Ci is bounded (wrt ||). If G is bounded, then |G| denotes the (finite)
multiset consisting of the natural numbers |C1|, . . . , |Ck|.

Level mappings are used to prove termination in the following way. Let G =
= G0,G1,G2, . . . be the goals in an SLD-derivation and || a level mapping. Given
that G is bounded wrt || and |Gi+1| smaller than |Gi| for all i, we can deduce that
the sequence G0,G1,G2, . . . is finite by the well-foundedness of the natural numbers.
This idea is quite old and originates from mathematical logic. The well-founded
ordering we shall use is called the multiset ordering [10]. The multiset ordering over
N is an ordering of finite multisets of natural numbers such that X is smaller than
Y (X < Y), if X can be obtained from Y by replacing one or more elements in Y
by any (finite) number of natural numbers, each of which is smaller than one of the
replaced elements. To prove the goal ordering property, that |Gi+1|< |Gi| for all i and
for all possible SLD-derivations, Bezem introduced the class of recurrent programs
[6], where the goal ordering property is always satisfied.

Definition 3.6 (recurrency). A clause A← B1, . . . ,Bm is recurrent (wrt ||), if
for every grounding substitution θ , |Aθ |> |Biθ | for all i ∈ {1, . . . ,m}. A program P
is recurrent (wrt ||), if every clause in P is recurrent (wrt ||).

L e m m a 3 . 2 [6]. Let P be a logic program, which is recurrent with respect
to a level mapping ||. Let G be a bounded goal and G

′
an SLD-resolvent of G and a

clause from P. Then:

1. the goal G
′
is bounded;

2. the multiset |G′ | is smaller than |G| in the multiset ordering.

Corollary. Every SLD-derivation of a recurrent program and a bounded goal
is finite.

Proof. Immediate, since the multiset ordering over N is well-founded [10, 11].
A norm is a mapping from ground terms to natural numbers. We will use the

54 Proc. of the Yerevan State Univ., Phys. and Math. Sci., 2013, № 3, p. 49–56.

term-size norm
∥∥

term−size: U → N from the Herbrand universe to the natural numbers

defined as follows: | f (t1, . . . , tn)|term−size =

{
n+∑

n
i=1 |ti|term−size, if n > 0,

0, if n = 0.
For example, |s

(
s(0)

)
|term−size = 1+1+0 = 2.

T h e o r e m 3 . 1 (Termination). Let P be an FSF program and P
′

be a
program obtained from P by Trans2 transformation. Then the SLD-tree of P

′
and

any goal G ∈ ∆(P) is finite.
Proof. Since SLD-trees are finitely branching, by Konig’s Lemma, ”SLD-tree

of P′ and G is finite” is equivalent to statement that the every SLD-derivation for P
′

and G is finite. It follows from the Corollary that for proving the finiteness of any
SLD-derivation of P

′
and G it is enough to define level mapping function || and to

show that P
′
is recurrent and G is bounded wrt that function.

For an atom A ∈ B, let us define the level mapping function || as follows:

a) |A|= |τ|term−size, if A has a form pT (t,τ), where pT ∈ΠP′ and pT /∈ΠP,

b) |A|= h+1, in other cases, where h = H(P).

Let us prove the recurrency of each clause S ∈ P
′
wrt level mapping:

1. Suppose S is obtained by the 1st point of Trans2 transformation and has
a form pT (t,s(z))← pT

1 (t1,z), . . . , pT
n (tn,z). Let i ∈ {1, . . . ,n} and θ is a grounding

substitution for S. |pT (t,s(z))θ |= |s(z)θ |term−size = |zθ |term−size+1 > |zθ |term−size =
= |pT

i (t i,z)θ |.

2. Suppose S is obtained by the 2nd point of Trans2 transformation and has
a form p(x1, . . . ,xk)← pT (x1, . . . ,xk,sh(0)). Let θ be a grounding substitution for S.
|p(x1, . . . ,xk)θ |= h+1 > h = |sh(0)|term−size = |pT (x1, . . . ,xk,sh(0))θ |.

It follows that all clauses of P are recurrent, and hence P is recurrent. Now,
let us consider the boundedness of the goal G. Let G be a goal←C1, . . . ,Cm, m≥ 1.
According to Definition 3.5, to prove the boundedness of G we should prove the
boundedness of every atom Ci, i ∈ {1, . . . ,n}. Let θ be a grounding substitution for
Ci. Then for every i, we have |Ciθ |= h+1. Thus, Ci is bounded and |Ci|= h+1.

Having obtained a terminating program, we need to prove that the logical
semantics of the transformed program coincides with that of the original one. In
order to talk about the ∆-equivalence of original and transformed programs, the
standard TP : 2B→ 2B [7] is introduced, which is defined as follows: TP (I) = {Aθ | θ

is grounding substitution for A← B1, . . . ,Bm ∈ P and B1θ , . . . ,Bmθ ∈ I}.
Define T k

P , k ≥ 0, as follows:

1. T 0
P = /0;

2. T k
P = TP(T k−1

P), k ≥ 1.

The function TP has a least fixpoint, denoted by T f ix
P , defined as

T f ix
P = sup{T k

P | k ≥ 0}.

Khachatryan S. A. On Termination of Functional Symbol-Free Logic Programs. 55

L e m m a 3 . 3 . Let P be an FSF program and p(τ) ∈ B. Then if P |= p(τ),
it follows that there exists k ≤ h such that T k

P |= p(τ), where h = H(P).
Proof. From definitions of H(P) and TP, it can be proved that T h

P = T f ix
P . So,

there exists k ≤ h such that T k
P = T f ix

P . As T f ix
P coincides with the least Herbrand

model for P [7], it follows from P |= p(τ) that T f ix
P |= p(τ). The result then follows.

L e m m a 3 . 4 . Let P be an FSF program and P
′
be a program obtained from

P by Trans2. Then if T k
P′
|= pT (τ,sn(0)), it follows that T k

P′
|= pT (τ,sn+1(0)), where

pT (τ,sn(0)) ∈ B, p ∈ΠP, n,k ≥ 0.
Proof. The proof follows straightforwardly by analysing the structure of P

′
.

L e m m a 3 . 5 . Let P be an FSF program and P
′
be a program obtained from

P by Trans2. Then if T k
P |= p(τ) and k ≤ h, it follows that:

a) T k
P′
|= pT (τ,sk(0));

b) T k+1
P′
|= p(τ),.

where p(τ) ∈ B, p ∈ΠP, k ≥ 0 and h = H(P).
Proof. We prove induction. For k = 0, T k

P = /0 and the result obviously holds.
Thus, consider k ≥ 1. Suppose T k

P |= p(τ). Then a grounding substitution θ exists
for a clause S of the form p(t)← p1(t1), . . . , pm(tm) ∈ P such that p(t)θ = p(τ) and
p1(t1)θ , . . . , pm(tm)θ ∈ T k−1

P . By induction, it follows that for every i ∈ {1, . . . ,m},
T k−1

P′
|= pT

i (t i,sk−1(0))θ . Because Trans(S) is pT (t,s(z))← pT
1 (t1,z), . . . , pT

m(tm,z)
and σ = θ ∪ {z/sk−1(0)} is a grounding substitution for Trans(S), it follows that
TP′ (T

k−1
P′

) |= pT (t,s(sk−1(0)))σ . Hence, T k
P′
|= pT (τ,sk(0)). Since k ≤ h, (Lemma

3.4) it follows from T k
P′
|= pT (τ,sk(0)) that T k

P′
|= pT (τ,sh(0)). As Depth(p) is

p(x1, . . . ,xk)← pT (x1, . . . ,xk,sh(0)), it follows that p(τ) ∈ TP′ (T
k

P′
), so T k+1

P′
|= p(τ).

L e m m a 3 . 6 . Let P be an FSF program. P
′

is a program obtained from P
by Trans2. Then, P |= p(τ), if and only if P

′ |= p(τ), for all p ∈ΠP, p(τ) ∈ B.
Proof.

a) Suppose P′ |= p(τ). As Trans2 saves the structure of the original program
by adding only constraints, we straightforwardly get that P |= p(τ).

b) Suppose P |= p(τ). There exists k ≤ h such that T k
P |= p(τ) (Lemma 3.3).

Hence, T k+1
P′
|= p(τ) (Lemma 3.5). As T k+1

P′
⊂ T f ix

P′
, it follows that T f ix

P′
|= p(τ).

Hence, T f ix
P′

coincides with the least Herbrand model for P
′
, and, consequently,

P
′ |= p(τ) [7].

T h e o r e m 3 . 2 (Equivalence). Let P be an FSF program and P
′

be a
program obtained from P by Trans2 transformation. Then, for any goal G ∈ ∆(P),
P |= G, if and only if P

′ |= G.
Proof. Immediate from Lemma 3.6.
In other words, the transformed program and the original one are ∆-equivalent.

Received 05.09.2013

56 Proc. of the Yerevan State Univ., Phys. and Math. Sci., 2013, № 3, p. 49–56.

R E F E R E N C E S

1. Plümer L. Termination Proofs for Logic Programs. Berlin: Springer-Verlag, 1990.
2. Ullman J. D., van Gelder A. Efficient Tests for Top-Down Termination of Logical

Rules. // J. ACM, 1988, v. 35, p. 345–373.
3. Nigiyan S.A. The Prolog Interpreter from the Viewpoint of Logical Semantics. //

Programming and Computer Software, 1994, v. 20, № 2, p. 69–75.
4. Nigiyan S.A., Khachoyan L.O. On A-Equivalence of Logic Programs. // Doklady NAN

Armenii, 1999, v. 99, № 2, p. 99–103 (in Russian).
5. Cavedon L. Acyclic Logic Programs and the Completeness of SLDNF-Resolution. //

Theoretical Comput. Sci., 1991, v. 86, p. 81–92.
6. Bezem M.A. Strong Termination of Logic Programs. // Journal of Logic Programming,

1993, v. 15, № 1&2, p. 79–97.
7. Lloyd J.W. Foundations of Logic Programming. Springer-Verlag, 1984.
8. Nilsson U., Maluszski J. Logic, Programming and PROLOG (2nd edition). John Wiley

& Sons, Inc., 1995.
9. Nigiyan S.A., Khachoyan L.O. Transformations of Logic Programs. // Programming

and Computer Software, 1997, v. 23, № 6, p. 302–309.
10. Dershowitz N. Termination of Rewriting. // J. Symbolic Comput., 1987, v. 3, p. 69–116.
11. Vereshchagin N.K., Shen A. Chast 1. Lektsii po Matematicheskoy Logike i Teorii

Algoritmov (2-e izd.), 2002 (in Russian).

