
PROCEEDINGS OF THE YEREVAN STATE UNIVERSITY

Physical and Mathematical Sciences 2014, № 2, p. 24–29

M a t h e m a t i c s

NONSELFADJOINT DEGENERATE DIFFERENTIAL EQUATIONS
OF HIGHER ORDER

L. P. TEPOYAN ∗

Chair of Differential Equations YSU, Armenia

In this article we consider Dirichlet problem for some class of degenerate
nonselfadjoint differential equations of higher order. We prove the existence
and uniqueness of the generalized solution, establish analogue of the Keldysh
theorem and explore the spectral properties of the corresponding operator.
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1. Introduction. The main focus of the present paper is on the degenerate
differential equation:

Lu≡ (−1)m(tαu(m)
)(m)

+a
(
tα−1u(m)

)(m−1)
+ ptβ u = f (t), (1)

where m ∈ N, t belongs to the finite interval (0,b), α ≥ 0, α 6= 1,3, . . . ,2m− 1,
β ≥ α−2m, a 6= 0, a and p are real constants, f ∈ L2,−β (0,b), i.e.

‖ f‖2
L2,−β (0,b)

=
∫ b

0
t−β | f (t)|2 dt < ∞.

The dependence of the character of the boundary conditions with respect to t for
t = 0 from the “lower order” terms was first observed by M.V. Keldish in [1] for the
degenerate second order elliptic equation in a region in the plane. The case m = 1,
β = 0, 0 ≤ α < 2 was considered in [2, 3] and the case m = 2, β = 0, 0 ≤ α ≤ 4
in [4]. In [5] the self-adjoint case of higher order degenerate differential equations
with arbitrary weight function on a finite interval has been considered. Note also that
here have been used the method suggested by A.A. Dezin (see [6]).

2. Weighted Sobolev Spaces Ẇ m
α (0,b).

Let Ċm[0,b] denote the set of functions u ∈Cm[0,b], satisfing

u(k)(0) = u(k)(b) = 0, k = 0,1, . . . ,m−1. (2)
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Define Ẇ m
α (0,b) as the completion of Ċm[0,b] in the norm

‖u‖2
Ẇ m

α (0,b) =
∫ b

0
tα |u(m)(t)|2 dt.

Denote the corresponding scalar product in Ẇ m
α (0,b) by {u,v}α = (tαu(m),v(m)),

where (·, ·) stands for the scalar product in L2(0,b).
Observe that for every t0 ∈ (ε,b],ε > 0, any function u ∈ Ẇ m

α (0,b) has finite
derivatives u(k)(t0),k = 0,1, . . . ,m−1, and u(k)(b) = 0, k = 0,1, . . . ,m−1 (see [7]).

The proofs of the following two Propositions can be found, for instance, in [8].
P r o p o s i t i o n 1. For any u ∈ Ẇ m

α (0,b),α 6= 1,3, . . . ,2m−1, we have the
following estimates

|u(k)(t)|2 ≤C1t2m−2k−1−α‖u‖2
Ẇ m

α (0,b), k = 0,1, . . . ,m−1. (3)

It follows from Proposition 1 that in the case α < 1 (weak degeneracy),
u( j)(0) = 0 for all j = 0,1, . . . ,m− 1, while for α > 1 (strong degeneracy) not all
u( j)(0) = 0. More precisely, for 1 < α < 2m−1 the derivatives u( j)(0) = 0 only for

j = 0,1, . . . ,sα , where sα = m− 1−
[

α +1
2

]
(here [a] is the integer part of a), and

for α > 2m−1 all u( j)(0), j = 0,1, . . . ,m−1, in general, can be infinite.

Denote L2,β (0,b) =
{

f ,
∫ b

0
tβ | f (t)|2 dt <+∞

}
. Observe that for α ≤ β we

have a continuous embedding L2,α(0,b)⊂ L2,β (0,b).
P r o p o s i t i o n 2. For β ≥ α−2m we have a continuous embedding

Ẇ m
α (0,b)⊂ L2,β (0,b), (4)

which is compact for β > α−2m.
Note that the embedding (4) for β = α − 2m is not compact and fails in the

case β < α−2m. Let d(m,α) = 4−m(α − 1)2(α − 3)2 · · ·(α − (2m− 1))2. In
Proposition 2 (see [8]), using the inequality of Hardy (see [9]), it has been proved
that ∫ b

0
tα |u(m)(t)|2 dt ≥ d(m,α)

∫ b

0
tα−2m|u(t)|2 dt, (5)

where the constant d(m,α) is exact. It is easy to verify that for β ≥ α−2m we have

‖u‖2
Ẇ m

α (0,b) ≥ bα−2m−β d(m,α)‖u‖2
L2,β (0,b)

. (6)

3. Nonselfadjoint Degenerate Equations. In this section we investigate the
equation (1) for a > 0. First we define the generalized solution of Dirichlet problem.

D e f i n i t i o n 1 . A function u ∈ Ẇ m
α (0,b) is called a generalized solution

of equation (1), if for arbitrary v ∈ Ẇ m
α (0,b) the following equality holds:

{u,v}α +a(−1)m−1(tα−1u(m),v(m−1))+ p(tβ u,v) = ( f ,v). (7)

T h e o r e m 1 . Assume that
a(α−1)(−1)m > 0,

γ = bα−2m−β
(
d(m,α)+

a
2
(α−1)(−1)md(m−1,α−2)

)
+ p > 0.

(8)
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Then the generalized solution of the equation (7) exists and is unique for every
f ∈ L2,−β (0,b).

P r o o f .
Uniqueness. To prove the uniqueness of the solution, we take in (7) f = 0 and

v = u. Let α > 1. By integrating by parts, we get(
tα−1u(m),u(m−1))=−1

2
(
tα−1|u(m−1)(t)|2

)∣∣
t=0−

α−1
2

∫ b

0
tα−2|u(m−1)(t)|2 dt.

It follows from (3), for k = m−1, that the value
(
tα−1|u(m−1)(t)|2

)∣∣
t=0 is finite. On

the other hand, using (5), we get∫ b

0
tα−2|u(m−1)(t)|2 dt ≥ d(m−1,α−2)

∫ b

0
tα−2m|u(t)|2 dt.

Hence, using the inequality (6), we obtain

0 = {u,u}α +a(−1)m−1(tα−1u(m),u(m−1))+ p(tβ u,u)≥

≥a
2
(−1)m(tα−1|u(m−1)(t)

∣∣2)∣∣
t=0 + γ

∫ b

0
tβ
∣∣u(t)∣∣2 dt.

Now the uniqueness of the generalized solution follows from the condition (8).
Existence. To prove the existence of the generalized solution, we define a linear

functional l f (v) = ( f ,v),v ∈ Ẇ m
α (0,b). From the continuity of the embedding (4) it

follows that

|l f (v)| ≤ ‖ f‖L2,−β (0,b)‖v‖L2,β (0,b) ≤ c‖ f‖L2,−β (0,b)‖v‖Ẇ m
α (0,b),

therefore, the linear functional l f (v) is bounded on Ẇ m
α (0,b). Hence, it can be repre-

sented in the form l f (v) = ( f ,v) = {u∗,v},u∗ ∈ Ẇ m
α (0,b) (this follows from the Riesz

theorem on the representation of the linear continuous functional). The last two terms
in the left hand-side of the equality (7) also can be regarded as a continuous linear
functional with respect to u and represented in the form {u,Kv}α ,Kv ∈ Ẇ m

α (0,b). In
fact, using the inequality (5), we can write

|a(−1)m−1(tα−1u(m),v(m−1))+ p(tβ u,v)| ≤ |a(t
α

2 u(m), t
α

2−1v(m−1))|+|p
(
t

β

2 u, t
β

2 v
)
| ≤

≤ c1‖u‖Ẇ m
α (0,b)

{∫ b

0
tα−2|v(m−1)(t)|2 dt

}1/2

+ c2‖u‖L2,α−2m(0,b)‖v‖L2,α−2m(0,b) ≤

≤ 2c1

|α−1|
‖u‖Ẇ m

α (0,b)‖v‖Ẇ m
α (0,b)+c3‖u‖Ẇ m

α (0,b)‖v‖Ẇ m
α (0,b) = c‖u‖Ẇ m

α (0,b)‖v‖Ẇ m
α (0,b).

From equality (7) we deduce that for any v ∈ Ẇ m
α (0,b) we have{

u,(I +K)v
}

α
= {u∗,v}α . (9)

Observe that the image of the operator I+K is dense in Ẇ m
α (0,b). Indeed, if for some

u0 ∈ Ẇ m
α (0,b) {

u0,(I +K)v
}

α

= 0

for every v ∈ Ẇ m
α (0,b), then u0 = 0, since we have already proved the uniqueness of

the generalized solution for (7).



Tepoyan L. P. Nonselfadjoint Degenerate Differential Equations of Higher Order. 27

Assume that 0 < σd(m,α)bα−2m−β ≤ γ . Then we can write

{u,(I +K)u}α ≥ σ{u,u}α +
(
bα−2m−β

(
(1−σ)d(m,α)+

+
a
2
(α−1)(−1)md(m−1,α−2)

)
+ p
)∫ b

0
tβ |u(t)|2 dt =

= σ{u,u}α +
(
γ−σd(m,α)bα−2m−β

)∫ b

0
tβ |u(t)|2 dt ≥

≥ σ{u,u}α .

Finally, we get
{u,(I +K)u}α ≥ σ{u,u}α . (10)

From (10) it follows that (I +K)−1 is defined on Ẇ m
α (0,b) and is bounded.

Consequently, there exists the operator I +K∗ and (I +K∗)−1 = ((I +K)−1)∗ (here
K∗ denotes the adjoint operator). Hence, from (9) we obtain

u = (I +K∗)−1u∗.

For α < 1 the proof is similar, and we use the fact that
(
tα−1|u(m−1)(t)|2

)∣∣∣
t=0

= 0,
which follows from Proposition 1. �

Now we define an operator S : D(S)⊂ Ẇ m
α (0,b)⊂ L2,β (0,b)→ L2,−β (0,b).

D e f i n i t i o n 2 . We say that u ∈ Ẇ m
α (0,b) belongs to D(S), if there exists

a function f ∈ L2,−β (0,b) satisfying to (7) for every v ∈ Ẇ m
α (0,b). In this case we

write Su = f .
The operator S acts from the space L2,β (0,b) to L2,−β (0,b). It is easy to check

that the operator S := t−β S,D(S) = D(S), S : L2,β (0,b)→ L2,β (0,b) is an operator
in the space L2,β (0,b), since if f ∈ L2,−β (0,b), then f1 := t−β f ∈ L2,β (0,b) and
‖ f‖L2,−β (0,b) = ‖ f1‖L2,β (0,b).

P r o p o s i t i o n 3. Under the assumptions of Theorem 1, the inverse
operator S−1 : L2,β (0,b)→ L2,β (0,b) is continuous for β ≥ α − 2m and is compact
for β > α−2m.

P r o o f . For the proof first observe that for u ∈ D(S) we have

‖u‖L2,β (0,b) ≤ c‖ f‖L2,−β (0,b) = c‖ f1‖L2,β (0,b).

In fact, by setting v = u in the equality (7), and by using the inequalities (6),
(10), and applying considerations of Theorem 1 proof, we get

σbα−2m−β d(m,α)‖u‖2
L2,β (0,b)

≤ σd(m,α)‖u‖2
Ẇ m

α (0,b) ≤

≤ {(I +K)u,u}α = ( f ,u)≤ ‖ f‖L2,−β (0,b)‖u‖L2,β (0,b) = ‖ f1‖L2,β (0,b)‖u‖L2,β (0,b).

Thus, we obtain

‖S−1 f1‖L2,β (0,b) ≤ c‖ f1‖L2,β (0,b), (11)

consequently, the continuity of S−1 for β ≥ α−2m is proved.
To show the compactness of S−1 for β < α − 2m it is enough to apply the

compactness of the embedding (4) for β < α−2m. �
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Let us consider the following equation

T v≡ (−1)m(tαv(m)
)(m)−a

(
tα−1v(m−1))(m)

+ ptβ v = g(t), (12)

where α ≥ 0,α 6= 1,3, . . . ,2m− 1, β ≥ α − 2m, g ∈ L2,−β (0,b), a 6= 0, a and p are
real constants.

D e f i n i t i o n 3 . We say that v ∈ L2,β (0,b) is a generalized solution of the
equation (12), if for every u ∈ D(S) the following equality holds:

(Su,v) = (u,g). (13)

Let g1 := t−β g. Definition 3 of the generalized solution as above defines an
operator T : L2,β (0,b) → L2,β (0,b), T := t−β T . Actually, we have defined the
operator T as the adjoint to S operator in L2,β (0,b), i.e.

T= S∗.

T h e o r e m 2 . Under the assumptions of Theorem 1, the generalized solu-
tion of the equation (12) exists and is unique for every g ∈ L2,−β (0,b). Moreover,
the inverse operator T−1 : L2,β (0,b)→ L2,β (0,b) is continuous for β ≥ α −2m and
is compact for β > α−2m.

P r o o f . Solvability of the equation Su = f1 for any f1 ∈ L2,−β (0,b) (see
Theorem 1) implies the uniqueness of the solution of equation (12), while existence
of the bounded inverse operator S−1 (see Proposition 3) implies the solvability of
(12) for any g ∈ L2,−β (0,b) (see, for instance, [10]). Since we have (S∗)−1 = (S−1)∗,
boundedness and compactness of the operator S−1 imply boundedness and
compactness of the operator T−1 for β ≥ α−2m, and β > α−2m respectively
(see Proposition 3). �

At the end we establish the spectral properties of the operators S and T.
P r o p o s i t i o n 4. The spectra of the operators S and T are in the right

half-plane.
P r o o f . Since the operator T is adjoint to S, therefore, it is sufficient to

prove the statement for the operator S. It follows from Proposition 3, that 0 ∈ ρ(S),
where ρ(S) means the resolvent set of the operator S. Second inequality in (8) will
be evidently satisfied, if we put instead of the number p some number p1 > p. Let
Reλ < 0. Then, similar to Proposition 3, we can prove that for any f ∈ L2,β (0,b)
(see also [2])

‖(S−λ I)−1 f1‖L2,β (0,b) ≤ c‖ f1‖L2,β (0,b),

where I is the identity operator in L2,β (0,b). �
R e m a r k 1 . For α > 1 and for every generalized solution v of equation (12)

we have (
tα−1|u(m−1)(t)|2

)∣∣∣
t=0

= 0. (14)

In fact, by replacing g by T v in (13), and then integrating by parts the second term and
using equality (7), we obtain (14). Note also that for the equation (7) the left-hand
side of (14) is merely bounded. This is an analogue of the Keldish theorem (see [1]).
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R e m a r k 2 . Another interesting phenomenon connected with degenerate
equations is the appearance of the continuous spectrum. Assume that in Eq. (7)
a = p = 0 and β = α−2m. In [8] it has been proved that the spectrum of the operator

Bu := (−1)mt2m−α
(
tαu(m)

)(m)
, B : L2,α−2m(0,b)→ L2,α−2m(0,b)

is purely continuous and coincides with the ray [d(m,α),+∞). Note also that the
spectrum of the operator Qu := (−1)mt−β (tαu(m))(m), Q : L2,β (0,b)→ L2,β (0,b)
for β > α−2m is discrete.
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