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In the paper the Dirichlet problem for some class of degenerate nonself-
adjoint differential operator equations of higher order on the infinite interval
are considered.

Existence and uniqueness of the generalized solution of Dirichlet problem
is proved, some analogue of the Keldysh theorem for the corresponding one-
dimensional operator is established.
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1. Introduction. In this article we consider the degenerate differential operator
equation

Lu≡ (−1)m(tαu(m)
)(m)

+(−1)m−1A
(
tα−1u(m)

)(m−1)
+Ptβ u = f (t), (1)

where m∈N, t ∈ (1;+∞),α 6= 1,3, . . . ,2m−1,β ≤α−2m, A and P are linear opera-
tors (unbounded in general ) in the separable Hilbert space H, f ∈ L2,−β ((1,+∞),H),
i.e. ‖ f‖2

L2,−β ((1,+∞),H) =
∫ +∞

1 t−β‖ f (t)‖2
H dt < ∞. The operators A and P have a com-

mon complete system of eigenfunctions {ϕk}k∈N, which form a Riesz basis in H, i.e.
any x ∈ H has the unique representation

x =
∞

∑
k=1

xk(t)ϕk

and there are some positive constants c1 and c2 such that

c1

∞

∑
k=1
|xk|2 ≤ ‖x‖2 ≤ c2

∞

∑
k=1
|xk|2.

If m = 1, then the operator A is a multiplication operator Au = au, a ∈ R, a 6= 0,
Pu =−uxx, x ∈ (0,c), and so we obtain a degenerate elliptic operator in the rectangle
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(0,b) ×(0,c). The dependence of the character of the boundary conditions with
respect to t for t = +∞ from the sign of the number a was first observed in [1] by
M.Keldish. The case m = 1, β = 0, 0≤ α < 2 was considered in [2, 3] and the case
m= 2, β = 0, 0≤α ≤ 4 in [4] (on the finite interval). Observe that weighted Sobolev
spaces on the infinite inverval have been studied, for instance, by L.D. Kudryavtzev
in [5]. This problem in the case A = 0 is considered by L. Tepoyan in [6]. It is
important to observe that here the method suggested by A.A. Dezinhas been used
(see [7]). Note that in [8] it was studied the question of the number of real roots for
the characteristic polynomial in the one-dimensional case of (1) for a = p = 0.

First we define the weighted Sobolev spaces Ẇ m
α (1,+∞). then recall the

properties of the functions u ∈ Ẇ m
α (1,+∞) and the embedding theorems. Then we

consider the one-dimensional case of equation (1), i.e. the case when the operators A
and P are multiplication operators with the constants a and p respectively. We prove
the existence and uniqueness of the generalized solution as well as some analogue
of the Keldysh theorem (see [1]). Then we investigate the differential-operator equa-
tion (1) and, using the general method of A.A. Dezin (see [7]), we prove the unique
solvability of the generalized solution of Dirichlet problem for the equation (1).

2. Weighted Sobolev Spaces Ẇ m
α (1,+∞). Let Ċm[1,+∞) be the functions

u ∈Cm[1,+∞), which satisfy the conditions

u(k)(1) = u(k)(+∞) = 0, k = 0,1, . . . ,m−1. (2)

Define Ẇ m
α (1,+∞) as the completion of Ċm[1,+∞) in the norm

‖u‖2
Ẇ m

α (1,+∞) =
∫ +∞

1
tα |u(m)(t)|2 dt.

Denote the corresponding scalar product in Ẇ m
α (1,+∞) by {u,v}α =

= (tαu(m), v(m)), where (·, ·) stands for the scalar product in L2(1,+∞). Observe
that the functions u ∈ Ẇ m

α (1,+∞) for every t0 ∈ [1,+∞) have the finite values
u(k)(t0), k = 0,1, . . . ,m−1, and u(k)(1) = 0,k = 0,1, . . . ,m−1 (see [9]). The proofs
of the following two Propositions can be found in [6].

P r o p o s i t i o n 1. For the functions u ∈ Ẇ m
α (1,+∞),α 6= 1,3, . . . ,2m−1,

we have the following estimates

|u(k)(t)|2 ≤C1t2m−2k−1−α‖u‖2
Ẇ m

α (1,+∞), k = 0,1, . . . ,m−1. (3)

It follows from Proposition 1, that in the case α > 2m−1 (weak degeneracy)
u( j)(+∞) = 0 for all j = 0,1, . . . ,m−1, while for α < 2m−1 (strong degeneracy) not
all the conditions u( j)(+∞) = 0 “maintain”. For example, if 1 < α < 3, then after the
completion only the condition u(m−1)(+∞) = 0 “maintains” and for α < 1 all values
u( j)(+∞) for j = 0,1, . . . ,m−1 can be infinite in general.

Denote L2,β (1,+∞) =
{

f ,
∫ +∞

1 tβ | f (t)|2 dt <+∞
}

. Observe that for α ≤ β

we have a continuous embedding L2,β (1,+∞)⊂ L2,α(1,+∞).
P r o p o s i t i o n 2. For β ≤ α−2m we have a continuous embedding

Ẇ m
α (1,+∞)⊂ L2,β (1,∞), (4)

which is compact for β < α−2m.
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Note that the embedding (4) for β = α−2m is not compact, and in the case of
β > α−2m it fails.

Let d(m,α) = 4−m(α−1)2(α−3)2 · · ·(α− (2m−1))2. In Proposition 2 (see
[6]), using inequality of Hardy (see [5]), it is proved that∫ +∞

1
tα |u(m)(t)|2 dt ≥ d(m,α)

∫ +∞

1
tα−2m|u(t)|2 dt,

where the number d(m,α) is exact. It is easy to verify that for β ≤ α − 2m also an
upper bound holds, i.e. we have

‖u‖2
Ẇ m

α (1,+∞) ≥ d(m,α)‖u‖2
L2,β (1,+∞). (5)

3. One-Dimensional Nonselfadjoint Degenerate Differential Equations.
Here we consider the equation

Su≡ (−1)m(tαu(m)
)(m)

+a(−1)m−1(tα−1u(m)
)(m−1)

+ ptβ u = f (t), (6)

where m ∈ N, t ∈ (1,+∞), α 6= 1,3, . . . ,2m−1, β ≤ α−2m, a 6= 0, a and p are real
constants, f ∈ L2,−β (1,+∞).

Define the generalized solution of Dirichlet problem for the equation (6).
D e f i n i t i o n 1 . A function u ∈ Ẇ m

α (1,+∞) is called generalized solution
of the equation (6), if the equality

{u,v}α +a
(
tα−1u(m),v(m−1))+ p(tβ u,v) = ( f ,v). (7)

holds for an arbitrary v ∈ Ẇ m
α (1,+∞)

T h e o r e m 1 . If

a(1−α)> 0, γ = d(m,α)+
a
2
(1−α)d(m−1,α−2)+ p > 0, (8)

then the generalized solution of the equation (6) exists and is unique for every
f ∈ L2,−β (1,+∞).

P r o o f .
Uniqueness. To prove the uniqueness of the generalized solution, we set f = 0

and v = u in (7). Suppose that α < 1. Then, integrating the equality (7) by parts, we
obtain(

tα−1u(m),u(m−1))= 1
2
(
tα−1|u(m−1)(t)|2

)
|t=+∞−

α−1
2

∫ +∞

1
tα−2|u(m−1)(t)|2 dt.

From the inequality (3) (for k = m−1) we conclude that
(
tα−1|u(m−1)(t)|2

)
|t=+∞ is

finite. Now, using the Hardy inequality, we get∫ b

0
tα−2|u(m−1)(t)|2 dt ≥ d(m−1,α−2)

∫ b

0
tα−2m|u(t)|2 dt.

Thus, using inequality (5), we obtain

0 = {u,u}α+a
(
tα−1u(m),u(m−1))+ p(tβ u,u)≥

≥a
2
(
tα−1|u(m−1)(t)|2

)
|t=+∞ + γ

∫ +∞

1
tβ |u(t)|2 dt.

Now the uniqueness of the generalized solution immediately follows from the last
inequality and the condition (8).
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Existence. For the function f ∈ L2,−β (1,+∞) we define a linear functional
l f (v) = ( f ,v),v ∈ Ẇ m

α (1,+∞). From the continuity of the embedding (4), we get

|l f (v)| ≤ ‖ f‖L2,−β (1,+∞)‖v‖L2,β (1,+∞) ≤ c‖ f‖L2,−β (1,+∞)‖v‖Ẇ m
α (1,+∞).

Hence, the linear functional l f (v) is bounded in Ẇ m
α (1,+∞). From the Riesz theorem

on the representation of the linear continuous functional it follows that the functional
l f (v) can be represented in the form l f (v) = ( f ,v) = {u∗,v}, u∗ ∈ Ẇ m

α (1,+∞). The
last two terms in the left hand-side of the equality (7) also can be considered as a
continuous linear functional with respect to u ∈ Ẇ m

α (1,+∞) and represented in the
form {u,Kv}α ,Kv ∈ Ẇ m

α (1,+∞). Indeed, using the inequality (5), we can write

|a
(
tα−1u(m),v(m−1))+ p(tβ u,v)| ≤ c1‖u‖Ẇ m

α (1,+∞)

{∫ b

0
tα−2|v(m−1)(t)|2 dt

}1/2

+

+c2‖u‖L2,β (1,+∞)‖v‖L2,β (1,+∞) ≤
2c1

|α−1|
‖u‖Ẇ m

α (1,+∞)‖v‖Ẇ m
α (1,+∞)+

+c3‖u‖Ẇ m
α (1,+∞)‖v‖Ẇ m

α (1,+∞) = c‖u‖Ẇ m
α (1,+∞)‖v‖Ẇ m

α (1,+∞).

Consequently, we conclude that for every v ∈ Ẇ m
α (1,+∞) we have

{u,(I +K)v}α = {u∗,v}α . (9)

Note that the image of the operator I +K is dense in Ẇ m
α (1,+∞). In fact, when we

have some u0 ∈ Ẇ m
α (1,+∞) such that

{u0,(I +K)v}α = 0

for any v ∈ Ẇ m
α (1,+∞), then we obtain u0 = 0, because we have proved uniqueness

of the generalized solution for equation (7).
Assume that 0 < σd(m,α)≤ γ . Then we have

{u,(I +K)u}α ≥ σ{u,u}α +
((

(1−σ)d(m,α)+

+
a
2
(1−α)d(m−1,α−2)

)
+ p
)∫ +∞

1
tβ |u(t)|2 dt =

= σ{u,u}α +
(
γ−σd(m,α)

)∫ +∞

1
tβ |u(t)|2 dt ≥ σ{u,u}α .

Finally we get
{u,(I +K)u}α ≥ σ{u,u}α . (10)

From (10) it follows that (I +K)−1 is defined on Ẇ m
α (1,+∞) and is bounded.

Consequently the operators I+K∗ and (I+K∗)−1 = ((I+K)−1)∗ are defined. Hence,
from (10) we obtain

u = (I +K∗)−1u∗.

If α < 1, then we use the equality
(
tα−1|u(m−1)(t)|2

)
|t=0 = 0 (see Proposition 1). �

Define an operator S : D(S)⊂Ẇ m
α (1,+∞)⊂ L2,β (1,+∞)→ L2,−β (1,+∞) were

domain D(S) is dense in L2,β (1,+∞).
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D e f i n i t i o n 2 . We say that the function u∈ Ẇ m
α (1,+∞) belongs to D(S),

if there exists f ∈ L2,−β (1,+∞) such that the equality (7) is valid for every
v ∈ Ẇ m

α (1,+∞). Then we write Su = f .
The operator S acts from L2,β (1,+∞) to L2,−β (1,+∞). Define S := t−β S,

D(S) = D(S). It is easy to check that S is an operator in the space L2,β (1,+∞),
because for f ∈ L2,−β (1,+∞) we have f1 := t−β f ∈ L2,β (1,+∞), ‖ f‖L2,−β (1,+∞) =
= ‖ f1‖L2,β (1,+∞).

P r o p o s i t i o n 3. Under the assumptions of Theorem 1, the inverse oper-
ator S−1 : L2,β (1,+∞)→ L2,β (1,+∞) is continuous for β ≤ α−2m and compact for
β < α−2m.

P r o o f . First note that for u ∈ D(S) we have

‖u‖L2,β (1,+∞) ≤ c‖ f‖L2,−β (1,+∞) = c‖ f1‖L2,β (1,+∞).

Indeed, when we put v = u in (7), use inequalities (5), (10) and using considerations
of Theorem 1 proof, we obtain

σd(m,α)‖u‖2
L2,β (1,+∞) ≤ σd(m,α)‖u‖2

Ẇ m
α (1,+∞) ≤ {(I +K)u,u}α = ( f ,u)≤

≤ ‖ f‖L2,−β (1,+∞)‖u‖L2,β (1,+∞) = ‖ f1‖L2,β (1,+∞)‖u‖L2,β (1,+∞).

As a result we get
‖S−1 f1‖L2,β (1,+∞) ≤ c‖ f1‖L2,β (1,+∞), (11)

and so the continuity of S−1 for β ≤ α−2m is proved.
For the proof of the compactness of S−1 for β < α − 2m we apply the com-

pactness of the embedding (4). �
Let us consider the following equation:

T v≡ (−1)m(tαv(m)
)(m)−a(−1)m−1(tα−1v(m−1))(m)

+ ptβ v = g(t), (12)

where α ≥ 0,α 6= 1,3, . . . ,2m−1, β ≤ α−2m, g ∈ L2,−β (1,+∞), a 6= 0, a and p are
real constants.

D e f i n i t i o n 3 . We say, that the function v ∈ L2,β (1,+∞) is a generalized
solution of equation (12), if for every u ∈ D(S) we have the following equality

(Su,v) = (u,g). (13)

Let g1 := t−β g. Define an operator T : L2,β (1,+∞)→ L2,β (1,+∞), T := t−β T .
Observe that the operator T is the adjoint of the operator S in L2,β (1,+∞), i.e. T= S∗.

T h e o r e m 2 . Under the assumptions of Theorem 1 the generalized
solution of equation (12) exists and is unique for every g∈ L2,−β (1,+∞). The inverse
operator T−1 : L2,β (1,+∞)→ L2,β (1,+∞) is continuous for β ≥α−2m and compact
for β > α−2m.

P r o o f . From the solvability of equation Su = f1 for any f1 ∈ L2,−β (1,+∞)
(see Theorem 1) follows uniqueness of the solution of equation (12). Solvability of
equation (12) for any g ∈ L2,−β (1,+∞) follows from the existence of the bounded
inverse operator S−1 (see [7]). Since we have (S∗)−1 = (S−1)∗, the boundedness
and compactness of the operator S−1 imply the boundedness and compactness of the
operator T−1 for β ≤ α−2m and β < α−2m respectively (see Proposition 3). �
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R e m a r k . For α > 1 and for every generalized solution v of equation (12),
we have (

tα−1|u(m−1)(t)|2
)∣∣∣

t=0
= 0. (14)

In fact, replacing g by T v in equality (13), integrating by parts the second term
and using equality (7), we obtain (14). Note also that for equation (6) the left-hand
side of (14) is only bounded. This is some analogue of the Keldish theorem (see [1]).

4. Nonselfadjoint Degenerate Differential Operator Equations. Now we
consider the operator equation

Lu≡ (−1)m(tαu(m)
)(m)

+(−1)m−1A
(
tα−1u(m)

)(m−1)
+Ptβ u = f (t), (15)

where m ∈ N, t ∈ (1;+∞), α 6= 1,3, . . . ,2m− 1, β ≤ α − 2m, A and P are linear
operators in the separable Hilbert space H, f ∈ L2,−β ((1,+∞),H), the operators A
and P have common complete system of eigenfunctions {ϕk}k∈N, which forms a
Riesz basis in H. By the assumption the operators A and P have common complete
system of eigenfunctions {ϕk}∞

k=1, Aϕk = akϕk,Pϕk = pkϕk,k ∈ N, which forms a
Riesz basis in H, hence, we can write

u(t) =
∞

∑
k=1

uk(t)ϕk, f (t) =
∞

∑
k=1

fk(t)ϕk. (16)

Thus, the operator equation (15) can be decomposed into an infinite chain of ordinary
differential equations

Lkuk ≡ (−1)m(tαu(m)
k

)(m)
+ak

(
tα−1u(m)

k

)(m−1)
+ pktβ uk = fk(t), k ∈ N. (17)

It follows from the condition f ∈ L2,−β ((1,+∞),H) that fk ∈ L2,−β (1,+∞),k ∈ N.
For one-dimensional equations (17) we can define the generalized solutions uk(t).

D e f i n i t i o n 4 . A function u ∈ L2,β ((1,+∞),H) is called a generalized
solution of the operator equation (16), if it has representation

u(t) =
∞

∑
k=1

uk(t)ϕk,

where the functions uk(t),k ∈N, are the generalized solutions of the one-dimensional
equations (17).

For the proof of the next Proposition see [7].
P r o p o s i t i o n 4. The operator equation (15) is uniquely solvable for

every f ∈ L2,−β ((1,+∞),H), if and only if the equations (17) are uniquely solvable
for every fk ∈ L2,−β (1,+∞),k ∈ N and uniformly with respect to k ∈ N, we have

‖uk‖L2,β (1,+∞) ≤ c‖ fk‖L2,−β (1,+∞). (18)

Theorem 2 shows us that a sufficient condition for the uniquely solvability of
the equations (17) are the conditions (here we assume that ak 6= 0, ak and pk are real
for k ∈ N)

ak(1−α)> 0,γk = d(m,α)+
ak

2
(1−α)d(m−1,α−2)+ pk > ε > 0, k ∈N. (19)

T h e o r e m 3 . Let the condition (19) be fulfilled. Then the operator
equation (15) has a unique generalized solution for every f ∈ L2,−β ((1,+∞),H).
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P r o o f . It is easy to verify that under the conditions (19) uniformly with
respect to k ∈ N we have the inequalities (18). Thus, using Proposition 4, we
conclude that generalized solution exists and is unique. Since the system {ϕk}∞

k=1
forms a Riesz basis in H, we can write

‖u‖2
L2,β ((1,+∞),H) =

∫ b

0
tβ‖u(t)‖2

H dt ≤ c1

∫ b

0
tβ

∞

∑
k=1
|uk(t)|2 dt ≤

≤ c2

∞

∑
k=1
‖ fk‖2

L2,−β (1,+∞) ≤C‖ f‖L2,−β ((1,+∞),H).

(20)

It follows from inequality (20) that the inverse operator

L−1 : L2,−β ((1,+∞),H)→ L2,β ((1,+∞),H) for β ≤ α−2m

is bounded. In contrast to the one-dimensional case (see Proposition 3), here for
β < α−2m the operator L−1 in general is not compact (it will be compact only when
the space H is finite-dimensional). �

In conclusion, the author expresses her sincere gratitude to supervisor prof.
Tepoyan for the setting of the problem and for his constant attention.
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