Physical and Mathematical Sciences

2014, № 2, p. 64–66

COMMUNICATIONS

Mathematics

ON GENERALIZATION OF THE THEOREM OF PICARD

H. A. KAMALYAN *

Chair of Differential Equations YSU, Armenia

The present article is devoted to the generalization of the classic theorem of Picard on entire functions in case of \mathcal{A} -valued analitycal functions.

MSC2010: 46J15; 46J10.

Keywords: topological algebra, A-differentiation.

Let \mathcal{A} be a complex Banach algebra with unit **1** (we assume that $||\mathbf{1}|| = 1$ and $||xy|| \le ||x|| \cdot ||y||$ for every $x, y \in \mathcal{A}$).

Suppose simultaneously, a locally convex topology τ is given on the algebra \mathcal{A} , for which the identical map $(\mathcal{A},\|\cdot\|) \to (\mathcal{A},\tau)$ is continuous and multiplication is τ -continuous with respect to each component (see [1–3]). Let $\{P_{\alpha}\}_{\alpha\in\Gamma}$ be the system of algebraic seminorms, defining τ and assume that topological algebra (\mathcal{A},τ) is complete, locally convex. Let J be a closed two-sided ideal in algebra (\mathcal{A},τ) . Then the factor algebra $(\mathcal{A},\tau)/J$ is complete and locally convex with respect to factor topology τ_{Φ} generated by the corresponding family of algebraic factor seminorms $\{q_{\gamma}\}_{\gamma\in\Gamma}$. Note that the factor topology τ_{Φ} is the strongest topology in the algebra $(\mathcal{A},\tau)/J$, where the canonical homomorphism

$$\pi_{\!\mathcal{J}}: (\mathcal{A}, au)
ightarrow \left. \left(\mathcal{A}, au
ight) \middle/_{J}
ight.$$

is continuous.

Recall (see [4,5]) that in the complex algebra \mathcal{A} with unit, a linear operator $\mathcal{D}: \mathcal{A} \to \mathcal{A}$, satisfying

$$\mathcal{D}(xy) = x(\mathcal{D}y) + (\mathcal{D}x)y \quad (x, y \in \mathcal{A}),$$

is called A-differentiation.

^{*} E-mail: h.qamalyan@gmail.com

Denote by $\mathrm{Der}\big((\mathcal{A},\tau)\big)$ the set of all continuous (\mathcal{A},τ) -differentiations. Assume that $\mathcal{D}\in\mathrm{Der}\big((\mathcal{A},\tau)\big)$ and J is a closed, two-sided ideal. Then the continuous $(\mathcal{A},\tau)/J$ -differentiation, given by the formula

$$\mathfrak{D}_J, (\hat{a}) = \pi_J(\mathfrak{D}a),$$

acts on the factor algebra $(A, \tau)/I$.

Note that the set $V(a) = \{ \varphi(a) : ||\varphi|| = \varphi(1) = 1, \varphi \in \mathcal{A}^* \}$ is called the algebraic numerical range of the element $a \in \mathcal{A}$.

The following abstract version of the classical Picard theorem on entire functions is true (see [5,6]).

Theorem. Let (\mathcal{A}, τ) be a complex, complete, locally convex algebra with unit, and J be a closed, two-sided ideal in the algebra (\mathcal{A}, τ) and $\mathcal{D} \in \mathrm{Der} \big((\mathcal{A}, \tau) \big)$. If the element $a \in (\mathcal{A}, \tau)$ is such that $\mathcal{D}a \notin J$, then

$$\bigcup_{\lambda \in \mathbb{C}} V\Big(\big(\exp(\lambda \mathcal{D}) \big)_J(\hat{a}) \Big) = \mathbb{C}.$$

 $P\ r\ o\ o\ f$. For every $j\in J$ we have $\mathfrak{D}a+j\notin J$, since $\mathfrak{D}a\notin J$. Hence, we have that $\exp\lambda(\mathfrak{D}a+j)\notin J$.

Suppose that $U_j = \bigcup_{\lambda \in \mathbb{C}} U_{\lambda}^{(j)}$, where $U_{\lambda}^{(j)} = V(\exp \lambda(\mathfrak{D}a + j))$. Let us prove, that $U_j = \mathbb{C}$. Let $\mathbb{C} \setminus U_j$ contains at least two points. For $\varphi \in St((\mathcal{A}, \tau))$ the image of the entire function

$$f_{\boldsymbol{\varphi}}^{\langle j \rangle}(\lambda) = \boldsymbol{\varphi}(\exp \lambda (\mathfrak{D}a + j))$$

is in the set U_j . Therefore, according to the classical Picard theorem for entire functions, we have that (see [7]) $f_{\varphi}^{\langle j \rangle}(\lambda) \equiv \text{const.}$ Then $f_{\varphi}^{\langle j \rangle}(\lambda) \equiv 0$ implying $\mathfrak{D}a + j = 0$. Consequently, $\mathfrak{D}a = -j \in J$, which contradicts the Theorem conditions.

Thus, the set $\mathbb{C} \setminus U_j$ can contain at most one point. Let us show that $U_j = \mathbb{C}$.

Let $\xi_0 \in sp(\mathcal{D}a+j)$ and $\xi \in \mathbb{C}$ be any complex number. Then there exists a point $\xi_1 \in U_\lambda^{\langle j \rangle}$ such that ξ is on the interval $[\xi_0, \xi_1]$. Since $\xi_0 \in U_\lambda^{\langle j \rangle} = V(\exp \lambda(\mathcal{D}a+j))$ and $U_\lambda^{\langle j \rangle}$ is convex, then $\xi \in U_\lambda^{\langle j \rangle}$, and therefore, $\xi \in U_j$. Thus, we have $U_j = \mathbb{C}$ for every $j \in J$. Consequently, the equality

$$V\left(\left(\exp(\lambda\,\mathcal{D})\right)_{\mathcal{J}}(\hat{a})\right) = \bigcap_{j\in (J,\tau)} V\left(\exp\lambda(\mathcal{D}a+j)\right) = \bigcap_{j\in J} U_j$$

is true in the factor algebra $(\mathcal{A}, \tau)/J$ for every $j \in \mathcal{J}, U_j = \mathbb{C}$. As a result we have that

$$V((\exp(\lambda \mathcal{D}))_{I}(\hat{a})) = \mathbb{C}.$$

In case when the topology τ coincides with the norm topology, we will get:

Corollary 1. Let $\mathcal A$ be a complex Banach algebra with unit, and J is a closed, two-sided ideal in $\mathcal A$ and $\mathcal D \in \mathrm{Der}(\mathcal A)$. If the element $a \in \mathcal A$ is such that $\mathcal D a \notin J$, then

$$\bigcup_{j=\mathbb{C}} V\left(\left(\exp(\lambda \mathcal{D})\right)_{\mathcal{J}}(\hat{a})\right) = \mathbb{C}.$$

In case when $J = \{0\}$ Corollary 1 implies:

Corollary 2. Let \mathcal{A} be a complex Banach algebra with unit and $\mathcal{D} \in \text{Der}(\mathcal{A})$. If the element $a \in \text{Ker}(\mathcal{D})$, then

$$\bigcup_{j\in\mathbb{C}}V\left(\left(\exp(\lambda\mathcal{D})\right)(a)
ight)=\mathbb{C}.$$

For inner differentiations we have:

Corollary 3. Let \mathcal{A} be a complex Banach algebra with unit, \mathcal{J} be a closed two-sided ideal. If the elements $a, b, c \in \mathcal{A}$ are such that $ac \neq cb \pmod{\mathfrak{J}}$, then

ements
$$a, b, c \in \mathcal{A}$$
 are such that $ac = 0$

$$\bigcup_{j \in \mathbb{C}} V\left((\exp \lambda \hat{a}) \, \hat{c} \exp\left(-\lambda \hat{b}\right) \right) = \mathbb{C}.$$

The author expresses his gratitude to professor M. I. Karakhanyan for the problem formulation.

Received 05.05.2014

REFERENCES

- 1. **Williams J.P.** On Commutativity and Numerical Range in Banach Algebras. // Journal of Functional Analysis, 1972, v. 10, p. 326–323.
- 2. **Karakhanyan M.İ.** An Asymptotic Version of General Commutator Theorems. // Functional Anal. i Prilozhen, 2005, v. 39, № 4, p. 80–83 (in Russian).
- 3. **Karakhanyan M.I., Kamalyan H.A.** A Remark on Commutativity of the Image of A-Valued Analytic Function. // Izvestia NAN Armenii. Matematika, 2013, v. 48, № 2, p. 39–42.
- 4. **Helemski A.Ya.** The Homology of Banach and Topological Algebras. M.: Izd. MGU, 1986 (in Russian).
- 5. **Bonsall J.F., Dunkan J.** Complete Normed Algebras. Berlin–Heidelberg–New-York: Springer-Verlag, 1973.
- 6. **Stoilov S.** Theory of Functions of a Complex Variable. M.: Inostr. Literatura, 1962, v. 2 (in Russian).
- 7. **Karakhanyan M.I.** On the Abstract Theorem of Picard. // Lobachevskii J. Math., 2005, v. 18, p. 127–130.