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1. Introduction. Let L(gq,a,f) denote the Sturm-Liouville boundary value
problem

ty=—y"+q(x)y=pny, xe(0,m), peC, (1)
y(0)cosa+y'(0)sina =0, « € (0,7), )
y(m)cos B+ (m)sinp =0, B€(0,m), 3)

where ¢ is a real-valued, summable on [0, 7] function (we write ¢ € L}[0,7]). By
L(g,a, B) we also denote the self-adjoint operator, generated by the problem
(D-@) (see [1]). It is known that under these conditions the spectra of the operator
L(g,a,B) is discrete and consists of real, simple eigenvalues [1]], which we denote
by Uy = (g, 0, B) = A2(q,a,B),n=0,1,2,..., emphasizing the dependence of i,
on g, o and f.

Let ¢(x,u,a,q) and y(x,u,B,q) are the solutions of Eq. (1), which satisfy
the initial conditions

90(07.‘1705:@ = Sinav (P/(Onuaavq> = —cosqa,

W(nnu»ﬁ7Q) = SiIlB, ‘V’(M%ﬁ&]) = —COSﬁ,

correspondingly. The eigenvalues u, = w,(¢,,B),n=0,1,2,..., of L(q,,B) are
the solutions of the equation

®(u) = D(n,a, ) < oz, 1, o) cos p+¢' (7,1, ) sinf =0
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or the equation

W(n) =P, o B) “ w(0,u,B)cos o+ y'(0,1,B)sinc = 0.
According to the well-known Liouville formula, the wronskian
W) =Wxe.y)=¢ v -9y

of the solutions @ and y is constant. It follows that W(0) = W () and consequently
Y(u,o,B) = —P(u,a,B). It is easy to see that the functions @,(x) = @(x, ,, o)
and v, (x) = y(x, Uy, B), n=0,1,2,..., are the eigenfunctions, corresponding to the
eigenvalue ,. Since all eigenvalues are simple, there exist constants ¢, = ¢, (g, @, B),
n=20,1,2,..., such that

P (X, hn) = Cn - Y(X, L) 4)

The squares of the L>-norm of these eigenfunctions:

T
ar=an(q. 0. ) = [ gu)Pdx. n=0,1.2,....
0

T
bn:bl’l(Q7a)ﬁ):/|Wn(x)|2dx7 n:O71727"'7
0

are called the norming constants.
In this paper we consider the case a, 8 € (0,7), i.e. we assume that sin o # 0
(P('x’“7 a? q) Of

and sin 3 # 0. In this case we consider the solution ¢ (x,u, o, q) := s
sin

the equation (1), which has the initial values

(p(07l‘1’7a7q) = 17 ¢(x7“7a7q) - _COta7
v(xu,B,q)
sin 3
tions @, (x) := @(x, Uy, &, q) and ¥, (x) := ¥(x, W,, o,q),n=0,1,2,... are the eigen-
functions, corresponding to the eigenvalue u,. It follows from (4) that for norming

and also we consider the solution ¥(x, i, ,q) := . Of course, the func-

constants @, := || @,|* = %, by = ||| = — 5— the following connections
sin” o sin” 3
~ b, an sin’ a

)

"Usin®B 3sin’B A2sin’B

hold.
2. The Main Result. The aim of this paper is to prove the following assertion.

Theorem. For the norming constants @, and b, the following connections
hold:

1 2
— — — ] =cot 6
P n) cota, (6)

> (1 2
+) (l;n_ﬂ?) = —cot . (7)
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For the solution @ it is well known the representation (see [[2,/3]])
X
Q(x,A,0,q) = coslx+/G(x,t)cosltdt, (8)
0
where for the kernel G(x,t) we have (in particular) (see [3])
X
1
G(x,x) = —coto + 3 /q(s)ds. )
0
Besides, it is known that G(x,7) satisfies to the Gelfand—Levitan integral equation
X
G(x,t)+F(x,t)+/G(x,s)F(s,t)ds:O, 0<t<ux, (10)
0

where the function F(x,t) is defined by the formula (see [3]])
Flor) = i <c05/lnxcoslnt B cosnxcosnt> 7

n=0
where a8 = 7 and ag =mn/2 for n = 1,2,... It easily follows from (9)—(11) that

G(0.0)= —F(0,0)= Y <1 _ 1) _

n=0

1 1 > 1 2
:_<%_ﬂ>_’;<%_ﬂ>:_cota. (12)

Thus, (6) is proved.
Let us now consider the functions (n =0,1,2,...)

(p(n'—x,/.tn,(x,q) (p(Jr—x,[.Ln)

(1)

G al

P\X, Hn ) = = . (13)
(5. ) O (7, U, @, q) O (7, )
Since @(x, 1, @, q) satisfies the Eq. (1) and
! 1
! ¢ (Jr—x,un) " ¢ (ﬂ_xhun>
p\XUy) = — y P\ X Hp) = 9
() o7, Uy) () O(7, )

we can see that p(x, 1t,) satisfies the equation

—p" (%, tn) + q(T — X) p(x, Un) = P (X, Hy)
and the initial conditions

p(0,u,) =1, p'(O,u,) = —(m = —(—cotf) =cotf =—cot(n—f). (14)

‘We also have
(0, u,) sina sin(7r—«)

p(7, ) = o(7r, 1) - o(m,u,)  o(m )’

(0, uy) —cosat  —cos(m— o)
o _ 9O _ _
Pt = ) T gt o)
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From this it follows that p,(x) := p(x, 1) satisfies the boundary condition
pu(7) cos(m — a) + pl(7)sin(r —a) =0, n=0,1,2,...

Let us denote ¢* (x) := g(m —x). Since w,(¢*, 71— B, 7 —a) = u,(g, , B) (it is easy to
prove and is well known, see for example [4]]), it follows, that p,(x), n=0,1,2,...,
are the eigenfunctions of the problem L(g*,m — f,m — a), which have the initial
conditions (14), i.e. p,(x) = ¢(x,up,®—B,q*), n=0,1,2,...

Thus, as in (12), for the norming constants @, = ||p(-, tt,)||> we have

1 1 =1 2
(do ﬂ) +n; (&n n) cot(m —B) = —cot B (15)
On the other hand, for the norming constants d,, according to (4), (5) and (13), we
have
T T 2 T x ;L
a, = / (x, tn)d ('0 p “
5 5 @2(7, 1y)
1 0 T
2 2
=——— [ 0°(s, Uy ds:i/(p S, Uy )ds =
)| 7= Gy | 7

an(q,a,B)  apsinfa
@*(7, ) csin’ B
Therefore, we can rewrite (15) in the form

<191071r) i <bl72r) — _cot(n—pB) = cot .

n=1

S
3

Thus, (7) is true and Theorem is proved. [l
3. Remark. It is known from the inverse Sturm-Liouville problems, that the

set of eigenvalues { ,un} and the norming constants { } uniquely determine

oo

the problem L(q, ¢, 3). That means, in particular, that we can determine {i)n} . by
n=
these two sequences. Now we will derive the precise formulae for these connections.

It is known that the specification of the spectra { Un(g, 0o, B )} » uniquely

determines the characteristic function ®(ut) (see [4], Lemma 1(iii); [5]], Lemma 2.2)
and also its derivative d®(u)/du = d(u) ([5], Lemma 2.3).
In particular, if o, € (0,7) the following formulas hold:

(o) = —nsinasinBH“kk_z“O (16)
k=1

and (ifn #0,ie.n=1,2,...)

Mk — Un
K2

() = — 5 [ — o] sinsin ] (17)

k=1ksn
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On the other hand, it is easy to prove the relation (see [5], Eq. (2.16) in Lemma 2.2
and see [4], Lemma 1 (iii))
an = —cp-P(Uy). (18)

Taking into account the connections (5) and (16)—(18)), we can find formulae
1
for — and —, n=1,2,...:
0 bn

.
ﬂWOHﬁ(ZH M;W>

k=1k#n

1
by

So, we can change the second assertion in Theorem by the following equation
do

1
s ——+

oo 7[
Hyie — Hy

o 4
—i—Z An” 5—— | =—cotB.
n=1 o Mk — Uy
7[2[“0 - .un]2 < H k2 )
k=1 k+#n
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