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1. Introduction. Let L(q,α,β ) denote the Sturm–Liouville boundary value
problem

`y≡−y′′+q(x)y = µy, x ∈ (0,π), µ ∈ C, (1)

y(0)cosα + y′(0)sinα = 0, α ∈ (0,π), (2)

y(π)cosβ + y′(π)sinβ = 0, β ∈ (0,π), (3)
where q is a real-valued, summable on [0,π] function (we write q ∈ L1

R[0,π]). By
L(q,α, β ) we also denote the self-adjoint operator, generated by the problem
(1)–(3) (see [1]). It is known that under these conditions the spectra of the operator
L(q,α,β ) is discrete and consists of real, simple eigenvalues [1], which we denote
by µn = µn(q,α,β ) = λ 2

n (q,α,β ), n = 0,1,2, . . ., emphasizing the dependence of µn

on q, α and β .
Let ϕ(x,µ,α,q) and ψ(x,µ,β ,q) are the solutions of Eq. (1), which satisfy

the initial conditions
ϕ(0,µ,α,q) = sinα, ϕ

′(0,µ,α,q) =−cosα,

ψ(π,µ,β ,q) = sinβ , ψ
′(π,µ,β ,q) =−cosβ ,

correspondingly. The eigenvalues µn = µn(q,α,β ), n = 0,1,2, . . ., of L(q,α,β ) are
the solutions of the equation

Φ(µ) = Φ(µ,α,β )
de f
= ϕ(π,µ,α)cosβ +ϕ

′(π,µ,α)sinβ = 0
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or the equation

Ψ(µ) = Ψ(µ,α,β )
de f
= ψ(0,µ,β )cosα +ψ

′(0,µ,β )sinα = 0.

According to the well-known Liouville formula, the wronskian

W (x) =W (x,ϕ,ψ) = ϕ ·ψ ′−ϕ
′
ψ

of the solutions ϕ and ψ is constant. It follows that W (0) =W (π) and consequently
Ψ(µ,α,β ) = −Φ(µ,α,β ). It is easy to see that the functions ϕn(x) = ϕ(x,µn,α)
and ψn(x) = ψ(x,µn,β ), n = 0,1,2, . . ., are the eigenfunctions, corresponding to the
eigenvalue µn. Since all eigenvalues are simple, there exist constants cn = cn(q,α,β ),
n = 0,1,2, . . ., such that

ϕ(x,µn) = cn ·ψ(x,µn). (4)

The squares of the L2-norm of these eigenfunctions:

an = an(q,α,β ) =

π∫
0

|ϕn(x)|2dx, n = 0,1,2, . . . ,

bn = bn(q,α,β ) =

π∫
0

|ψn(x)|2dx, n = 0,1,2, . . . ,

are called the norming constants.
In this paper we consider the case α,β ∈ (0,π), i.e. we assume that sinα 6= 0

and sinβ 6= 0. In this case we consider the solution ϕ̃(x,µ,α,q) :=
ϕ(x,µ,α,q)

sinα
of

the equation (1), which has the initial values

ϕ̃(0,µ,α,q) = 1, ϕ̃(x,µ,α,q) =−cotα,

and also we consider the solution ψ̃(x,µ,β ,q) :=
ψ(x,µ,β ,q)

sinβ
. Of course, the func-

tions ϕ̃n(x) := ϕ̃(x,µn,α,q) and ψ̃n(x) := ψ̃(x,µn,α,q), n= 0,1,2, . . . , are the eigen-
functions, corresponding to the eigenvalue µn. It follows from (4) that for norming

constants ãn := ‖ϕ̃n‖2 =
an

sin2
α
, b̃n := ‖ψ̃n‖2 =

bn

sin2
β

the following connections

b̃n =
bn

sin2
β

=
an

c2
n sin2

β
=

ãn sin2
α

c2
n sin2

β
(5)

hold.
2. The Main Result. The aim of this paper is to prove the following assertion.
T h e o r e m . For the norming constants ãn and b̃n the following connections

hold:

1
ã0
− 1

π
+

∞

∑
n=1

(
1
ãn
− 2

π

)
= cotα, (6)

1
b̃0
− 1

π
+

∞

∑
n=1

(
1
b̃n
− 2

π

)
=−cotβ . (7)
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For the solution ϕ̃ it is well known the representation (see [2, 3])

ϕ̃(x,λ ,α,q) = cosλx+
x∫

0

G(x, t)cosλ tdt, (8)

where for the kernel G(x, t) we have (in particular) (see [3])

G(x,x) =−cotα +
1
2

x∫
0

q(s)ds. (9)

Besides, it is known that G(x, t) satisfies to the Gelfand–Levitan integral equation

G(x, t)+F(x, t)+
x∫

0

G(x,s)F(s, t)ds = 0, 0≤ t ≤ x, (10)

where the function F(x, t) is defined by the formula (see [3])

F(x, t) =
∞

∑
n=0

(
cosλnxcosλnt

ãn
− cosnxcosnt

a0
n

)
, (11)

where a0
0 = π and a0

n = π/2 for n = 1,2, . . . It easily follows from (9)–(11) that

G(0,0) =−F(0,0) =−
∞

∑
n=0

(
1
ãn
− 1

a0
n

)
=

=−
(

1
ã0
− 1

π

)
−

∞

∑
n=1

(
1
ãn
− 2

π

)
=−cotα. (12)

Thus, (6) is proved.
Let us now consider the functions (n = 0,1,2, . . .)

p(x,µn) =
ϕ(π− x,µn,α,q)

ϕ(π,µn,α,q)
=

ϕ(π− x,µn)

ϕ(π,µn)
. (13)

Since ϕ(x,µ,α,q) satisfies the Eq. (1) and

p′(x,µn) =−
ϕ ′(π− x,µn)

ϕ(π,µn)
, p′′(x,µn) =

ϕ ′′(π− x,µn)

ϕ(π,µn)
,

we can see that p(x,µn) satisfies the equation

−p′′(x,µn)+q(π− x)p(x,µn) = µn p(x,µn)

and the initial conditions

p(0,µn) = 1, p′(0,µn) =−
ϕ ′(π,µn)

ϕ(π,µn)
=−(−cotβ ) = cotβ =−cot(π−β ). (14)

We also have

p(π,µn) =
ϕ(0,µn)

ϕ(π,µn)
=

sinα

ϕ(π,µn)
=

sin(π−α)

ϕ(π,µn)
,

p′(π,µn) =−
ϕ ′(0,µn)

ϕ(π,µn)
=− −cosα

ϕ(π,µn)
=
−cos(π−α)

ϕ(π,µn)
.



6 Proc. of the Yerevan State Univ., Phys. and Math. Sci., 2014, №3, p. 3–7.

From this it follows that pn(x) := p(x,µn) satisfies the boundary condition

pn(π)cos(π−α)+ p′n(π)sin(π−α) = 0, n = 0,1,2, . . .

Let us denote q∗(x) := q(π−x). Since µn(q∗,π−β ,π−α)= µn(q,α,β ) (it is easy to
prove and is well known, see for example [4]), it follows, that pn(x), n = 0,1,2, . . . ,
are the eigenfunctions of the problem L(q∗,π − β ,π − α), which have the initial
conditions (14), i.e. pn(x) = ϕ̃(x,µn,π−β ,q∗), n = 0,1,2, . . .

Thus, as in (12), for the norming constants ân = ‖p(·,µn)‖2 we have(
1
â0
− 1

π

)
+

∞

∑
n=1

(
1
ân
− 2

π

)
= cot(π−β ) =−cotβ . (15)

On the other hand, for the norming constants ân, according to (4), (5) and (13), we
have

ân =

π∫
0

p2(x,µn)dx =
π∫

0

ϕ2(π− x,µn)

ϕ2(π,µn)
dx =

=− 1
ϕ2(π,µn)

0∫
π

ϕ
2(s,µn)ds =

1
ϕ2(π,µn)

π∫
0

ϕ
2(s,µn)ds =

=
an(q,α,β )

ϕ2(π,µn)
=

ãn sin2
α

c2
n sin2

β
= b̃n.

Therefore, we can rewrite (15) in the form(
1
b̃0
− 1

π

)
−

∞

∑
n=1

(
1
b̃n
− 2

π

)
=−cot(π−β ) = cotβ .

Thus, (7) is true and Theorem is proved. �
3. Remark. It is known from the inverse Sturm–Liouville problems, that the

set of eigenvalues
{

µn

}∞

n=0
and the norming constants

{
ãn

}∞

n=0
uniquely determine

the problem L(q,α,β ). That means, in particular, that we can determine
{

b̃n

}∞

n=0
by

these two sequences. Now we will derive the precise formulae for these connections.
It is known that the specification of the spectra

{
µn(q,α,β )

}∞

n=0
uniquely

determines the characteristic function Φ(µ) (see [4], Lemma 1(iii); [5], Lemma 2.2)
and also its derivative ∂Φ(µ)/∂ µ = Φ̇(µ) ( [5], Lemma 2.3).

In particular, if α,β ∈ (0,π) the following formulas hold:

Φ̇(µ0) =−π sinα sinβ

∞

∏
k=1

µk−µ0

k2 (16)

and (if n 6= 0, i.e. n = 1,2, . . .)

Φ̇(µn) =−
π

n2 [µ0−µn]sinα sinβ

∞

∏
k=1,k 6=n

µk−µn

k2 . (17)
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On the other hand, it is easy to prove the relation (see [5], Eq. (2.16) in Lemma 2.2
and see [4], Lemma 1 (iii))

an =−cn · Φ̇(µn). (18)

Taking into account the connections (5) and (16)–(18), we can find formulae

for
1
b̃0

and
1
b̃n

, n = 1,2, . . . :

1
b̃0

=
ã0

π2

(
∞

∏
k=1

µk−µn

k2

)2 ,

1
b̃n

=
ãnn4

π2[µ0−µn]2

(
∞

∏
k=1,k 6=n

µk−µn

k2

)2 .

So, we can change the second assertion in Theorem by the following equation
ã0

π2

(
∞

∏
k=1

µk−µn

k2

)2 −
1
π
+

+
∞

∑
n=1


ãnn4

π2[µ0−µn]2

(
∞

∏
k=1,k 6=n

µk−µn

k2

)2 −
2
π

=−cotβ .
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