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1. Introduction. Let Γ be a subgroup of the group of real numbers R, which
is dense in R with respect to Euclidean topology τ and let G be the characters group
of Γ: G = Γ̂. By Pontryagin duality theorem we have that the characters group of G
is isomorphic to Γ: Ĝ ∼= Γ. Using G we define a Cartesian product G× [0,∞) and
glue the bottom layer G×{0} to the point. The obtained space is called generalized
plane and is denoted by ∆. Given construction is due to Arens and Singer. Let
π : G× [0,∞)→ ∆ be a canonical projection. Then the elements of ∆ are the points
π(α,r) = (α,r) with α ∈ G and r > 0, and ∗ = π(G×{0}) is the null element of
the space ∆. Generalized plane ∆ can be also canonically identified with the space
C= {αr : α ∈G,r ∈ [0,∞)}, which is the analogue of the complex plane C consisting
of the homorphisms αr : Γ→ C : a 7→ α(a)ra. It is usually more convenient to take
∆ = C, in which case the representation s = αr of an element s ∈ ∆ is called a polar
decomposition and the number r is called a modulus of s. As the null element ∗
essentially differs from the other elements of the space ∆, it makes sense to define the
space ∆0 = ∆\{∗}, so called punctured generalized plane.

Obviously, ∆0 = G×(0,∞) and ∆0 can be canonically identified with the space
{αr : α ∈ G,r ∈ (0,∞)}.

On the space ∆ the theory of generalized analytic functions is developed, which
allows to find new features by applying the classical apparatus of complex analysis
(see [1–3]). Our goal is to investigate the topologies arising on ∆.

2. Topologies on ∆. Thus G is the group of characters of Γ. Let {T} be some
base for the open sets of the unit circle T of the complex plane C and let F be the
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collection of all finite subsets of Γ. Define P(F,T ) = {χ ∈G| χ(F)⊆ T}. The family
{P(F,T ),F ∈ F,T ∈ {T}} is a base for some topology on G, which is called finite–
open topology for obvious reasons and is denoted by k. Then the topology on ∆ would
be the standard quotient topology τ∆ = {U ⊂ ∆ : π−1(U) ∈ k× τ[0,∞)}, where τ[0,∞)

is a restriction of the Euclidean topology τ to [0,∞). As a base for the topology τ∆

could be taken the family of sets B= {π(G× [0,r))}r>0∪π(any base for G×(0,∞)),
where the first component in this union is the neighborhood base at the null element
∗ of the space ∆. Similarly, we define the topology τ∆0 ∼= k× τ(0,+∞) on ∆0. The
canonical projection π is not open (since the topology k is not trivial), but it is a
closed mapping that induces a homeomorphism

π

∣∣∣
G×(0,∞)

: (G× (0,∞),k× τ(0,+∞))→ (∆0,τ∆0).

The space ∆ is then a locally compact Hausdorff space.
Let us now consider the mapping α :R→G : t→αt , where αt(a) = eiat ,a∈ Γ.

The density of Γ in R implies that α is injective. Indeed, if αt1 = αt2 with
t1, t2 ∈R, t1 6= t2, then eiat1 = eiat2 for all a ∈ Γ. Since Γ is dense in R and αti , i = 1,2,
are both continuous on (R,τ), we get that eiat1 = eiat2 for all a ∈ R, and, therefore,
t1 = t2. This argumentation can be also used as a justification of the parity α(R) = R̂
of two groups of characters with different domains (Γ and R respectively). In other
words, the equality α(R) = R̂ matches an element αt ∈α(R), t ∈R, with the element
of R̂ corresponding to the number t ∈ R. The proof of density of the image α(R) in
G is similar and is based on the fact that α(R) separates the points of a group Γ [4].

The space ∆0 = G× (0,∞), which has been canonically identified with
the space {αr : α ∈ G,r ∈ (0,∞)}, is a locally compact abelian group under
the coordinate-wise multiplication with the unit element α0 ·1 = α(0).

There are two topologies on α(R): the restriction k|α(R) of the finite-open
topology k on G and the topology τ̂ , which arises as a compact-open topology on
α(R) = R̂. Since each finite set is compact we get that the topology τ̂ is stronger than
k|α(R). As a neighborhood base at the unit element α0 ∈α(R) (which determines
τ̂) can be taken the family {Pε}ε∈(0,π) of the sets Pε = {αt : αt([−1,1])⊂Vε},
where Vε = {ξ ∈ T : ξ = eiθ ,θ ∈ (−ε,ε)}. Clearly Pε = α((−ε, ε)) and, therefore,
τ̂ = α(τ) the homeomorphic image of the Euclidean topology τ on R.

The mentioned topologies on α(R) determine two different factorizations of
the mapping α , which are presented in the following diagram:

(R, τ̂)

(α(R),k|α(R))

(α(R) = R̂,α(τ) = τ̂)

(G,k)
α ′2

α ′1

α ′′2

α ′′1

In this diagram α ′1 is a homeomorphism, α ′2 is a continuous homomorphism
and the insertion α ′′1 : αt 7→ αt |Γ as well as the embedding α ′′2 are continuous.
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The group α(R) is a path-connected group in both topologies as the image
of a path-connected space under the continuous mappings α ′1 and α ′2. Moreover, we
claim that these path-connectednesses are equivalent. Indeed, the path-connectedness
of α(R) with respect to the topology τ̂ clearly implies the path-connectedness with
respect to the weaker topology k|α(R). Let us now prove the converse statement.

L e m m a 2 . 1 . Any path
σ : I = [0,1]→ α(R),

that is continuous with respect to the topology k|α(R) is also continuous with respect
to the topology τ̂ = α(τ).

P r o o f . Let us first prove the continuity of a path σ at the point t0 ∈ I
with σ(t0) = α0, using the fact that {Pε}ε∈(0,π) is the neighborhood base at α0 in a
topology τ̂ . Let us fix any ε ∈ (0,π) and consider the corresponding

Pε =
{

αt : αt
(
[−1,1]

)
⊂Vε

}
= α

(
(−ε,ε)

)
as the neighborhood of α0 in a topology τ̂ . The set

Qε = {αt : αt(1)⊂Vε}= ∪n∈Zα(In)

is then a neighborhood of α0 in a topology k|α(R), where In = (2πn− ε,2πn+ ε),
n ∈ Z. Obviously we have Pε ⊂ Qε .

We have that σ is continuous at t0 with respect to the topology k|α(R). There-
fore, there exists a δ > 0 such that σ(Iδ ) ⊂ Qε , where Iδ = (t0− δ , t0 + δ )∩ I. We
want to show that σ(Iδ/2)⊂ Pε .

Indeed, the continuum σ(Iδ/2), which is contained in σ(Iδ ), is covered by the
set Q̃ε = {αt : αt(1)⊂V ε}= ∪n∈Zα(In), which is a countable union of compact and
therefore closed sets α(In). By Sierpinski’s theorem (see [5]) at most one of these
sets is non-empty. Since the set σ(Iδ/2) certainly intersects with α(I0), then α(I0)
would be the mentioned unique non-empty set.

It follows that σ(Iδ/2)⊂ α(I0)∩Qε = α(I0) = Pε , as desired.
The general case is reduced to the considered situation by the transitions from

σ to σ̃(t) = σ(t0)−1σ(t) and back again, using the fact that the shifts by σ(t0)−1 and
σ(t0) are topological automorphisms of α(R) in both topologies k

∣∣∣
α(R)

and τ̂ . �

The mapping α : R→ G generates an embedding
ϕ : C→ ∆

0 : z = t + iy 7→ ϕz = αte−y.

The transition from α to ϕ complexifies the above diagram keeping the properties of
the mappings in it.

The topology τ∆0

∣∣∣
ϕ(C)

, which is induced on ϕ(C) by a topology

τ∆0 ∼= k× τ(0,+∞), is weaker than the topology τϕ = ϕ(τc), which is the homeo-
morphic image of the Euclidean topology τc on C. The topology ϕ(τc) has two
other equivalent descriptions: it emerges as a product of topologies τ̂ × τ(0,∞) with
{Pε × (e−δ ,eδ )}ε∈(0,π),δ>0 being the neighborhood base at the unit element
(α0,1) ∼= ϕ(0) and as a compact–open topology on ϕ(C) with the neighborhood
base at the unit element formed by the sets

Pε,δ = {ϕz : ϕz([−1,1])⊂Vε,δ}= ϕ(Kε,δ ),ε ∈ (0,π), δ > 0,
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where Vε,δ = {w = ρeiθ : e−δ < ρ < eδ ,eiθ ∈ Vε}, and the sets
Kε,δ = {z = t + iy : |t| < ε, |y| < δ} obviously form the neighborhood base at the
zero element z = 0 of a group C.

Note that since α(R) is dense in G the image ϕ(C) is dense in both ∆0 and ∆.
D e f i n i t i o n 2 . 1 . For a point s ∈ ∆0 the set Cs = sϕ(C) is called a plane

in ∆0 passing through s.
Obviously, Cs is dense in ∆0 for any s ∈ ∆0. We also denote

C0 := Cϕ(0) = ϕ(C).
Define a mapping ϕs :C→Cs : z 7→ sϕz. Again there are two topologies on each plane
Cs: the topology τs := τ∆0

∣∣∣
Cs
, which is induced from ∆0 and the stronger topology

τsϕ = sτϕ = {sU : U ∈ τϕ}, which is inherited from C by the mapping ϕs.
3. Topologies Induced by Coverings. The theory of Bohr–Riemann surfaces

considers so called thin sets K in ∆ [2] and investigates the finite-sheeted coverings
( [6], §4) of the space ∆∗ = ∆0 \K. So, we now pass to the situation which often
arises in that theory.

Let s ∈ ∆0 and let K be a closed nowhere dense subset of ∆0 such that the
intersection K∩Cs is a discrete set. Define ∆∗ = ∆0 \K and C∗s = Cs∩∆∗ = Cs \K.

Let us consider the preimage π−1(C∗s ) under unfolded, finite-sheeted covering
π : X → ∆∗, where X is a topological space. There are two topologies that arise on
π−1(C∗s ): the topology τs,X , which is induced from a topology τX of the space X and is

locally homeomorphic to τ∗s = τs

∣∣∣
C∗s

, and the topology τs,C, which base consists of the

path-connected components of the sets from τs,X . Thus, using the characterization of
τsϕ as a topology with a base consisted of the path-connected components of the sets

from τs, we get that the restriction π

∣∣∣
π−1(C∗s )

induces two coverings of the punctured

plane C∗s : πs,X : τs,X → τ∗s and πs,C : τs,C→ τ∗sϕ .
T h e o r e m 3 . 1 . The path-connected components of a subspace π−1(C∗s )

in the topology τs,X coincide with the path-connected components of a Riemann
surface π−1(C∗s ) in τs,C.

P r o o f . Let x∈ π−1(C∗s ) and let Cx and Dx be the path-connected components
of the preimage π−1(C∗s ) containing x in the topologies τs,C and τs,X respectively.
Since τs,C is stronger than τs,X it follows that Cx ⊂ Dx. Let us proof the converse
inclusion. Fix an arbitrary point y ∈ Dx and connect it with x by a path

γ : I = [0,1]→ X ,

which lies in Dx and which is continuous with respect to the topology τs,X .
Then λ = π ◦ γ : I → C∗s is a continuous path from τ

∣∣
I to τ∗s . Temporarily

forgetting about the stars we get that λ is a continuous path from τ
∣∣
I to τs and,

therefore, s−1λ : I → C0 is a continuous path from τ
∣∣
I to τ0 = τ∆0

∣∣
C0
∼=

∼= k
∣∣
α(R)× τ(0,+∞).

Using the interpretation of a space ∆0 as a Cartesian product G× (0,∞) we get
that the mapping

s−1
λ : I→ C0
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is comprised of the pair of mappings s−1λ (t) = (β (t),r(t)), t ∈ I, with β : I →
→ α(R) and r : I→ (0,+∞). Then, as we know (see, e.g., [5]), the mapping s−1λ is
continuous if and only if β is a continuous mapping from τ

∣∣
I to k

∣∣
α(R) and r is a

continuous mapping from τ
∣∣
I to τ(0,+∞). Thus, by Lemma 2.1, we get that the path

β : I → α(R) is continuous with respect to the topology τ̂ = α(τ) as well. This
together with the arguments above shows that the mapping s−1λ (t) = (β (t), r(t)),
t ∈ I, is continuous with respect to the topology τ̂ × τ(0,+∞)

∼= τϕ , i.e. λ is a
continuous path from τ

∣∣
I to τsϕ and, therefore, to τ∗sϕ as well. The continuity of

the path γ with respect to the topology τs,C is obtained from the local homeomor-
phity of π as a covering πs,C : π−1(C∗s )→ C∗s from τs,C to τ∗sϕ . Thus, y ∈ Cx. This
completes the proof of the Theorem. �
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