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1. Introduction. Let I" be a subgroup of the group of real numbers R, which
is dense in R with respect to Euclidean topology 7 and let G be the characters group
of I': G =T". By Pontryagin duality theorem we have that the characters group of G
is isomorphic to I': G = T. Using G we define a Cartesian product G x [0,00) and
glue the bottom layer G x {0} to the point. The obtained space is called generalized
plane and is denoted by A. Given construction is due to Arens and Singer. Let
7 : G X [0,00) — A be a canonical projection. Then the elements of A are the points
n(a,r) = (a,r) with & € G and r > 0, and * = (G x {0}) is the null element of
the space A. Generalized plane A can be also canonically identified with the space
C={ar:aeG,rel0,)}, which is the analogue of the complex plane C consisting
of the homorphisms ar :I' — C : a — o(a)r®. It is usually more convenient to take
A = C, in which case the representation s = ar of an element s € A is called a polar
decomposition and the number r is called a modulus of s. As the null element *
essentially differs from the other elements of the space A, it makes sense to define the
space A’ = A\ {x}, so called punctured generalized plane.

Obviously, A = G x (0,) and A° can be canonically identified with the space
{ar: o€ G,re (0,o0)}.

On the space A the theory of generalized analytic functions is developed, which
allows to find new features by applying the classical apparatus of complex analysis
(see [1-3]). Our goal is to investigate the topologies arising on A.

2. Topologies on A. Thus G is the group of characters of I'. Let {7’} be some
base for the open sets of the unit circle T of the complex plane C and let F be the
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collection of all finite subsets of I'. Define P(F,T) = {x € G| x(F) C T}. The family
{P(F,T),F € F,T € {T}} is a base for some topology on G, which is called finite—
open topology for obvious reasons and is denoted by k. Then the topology on A would
be the standard quotient topology Ta = {U C A: = (U) € k x Tjo,00) J» Where Tjg co)
is a restriction of the Euclidean topology 7 to [0,00). As a base for the topology Ta
could be taken the family of sets B = {7 (G x [0, 7)) },~oUm(any base for G x (0,)),
where the first component in this union is the neighborhood base at the null element
* of the space A. Similarly, we define the topology Tyo = k X T(g_ye) ON A, The
canonical projection 7 is not open (since the topology k is not trivial), but it is a
closed mapping that induces a homeomorphism

(G x (0,00), k - A%, Ty0).
”GX(O&O) (G x (0,00), X T(0,+ ))—>( Tp0)

The space A is then a locally compact Hausdorff space.

Let us now consider the mapping o : R — G : t — ¢, where 04 (a) =™ a€T.
The density of I' in R implies that ¢ is injective. Indeed, if oy, = o4, with
t1,ty € Rt # to, then €l = ¢/ for all @ € T. Since I"is dense in R and a,,i = 1,2,
are both continuous on (R, 7), we get that el = ¢ for all g € R, and, therefore,
11 = t,. This argumentation can be also used as a justification of the parity o(R) = R
of two groups of characters with different domains (I" and R respectively). In other
words, the equality a(R) = IR matches an element ; € ot(R), 7 € R, with the element
of R corresponding to the number 7 € R. The proof of density of the image a¢(R) in
G is similar and is based on the fact that a(R) separates the points of a group I [4].

The space A” = G x (0,%0), which has been canonically identified with
the space {ar:a € G,r € (0,)}, is a locally compact abelian group under
the coordinate-wise multiplication with the unit element o - 1 = o/(0).

There are two topologies on ¢¢(R): the restriction k|r) of the finite-open
topology k£ on G and the topology %, which arises as a compact-open topology on
o(R) = IR. Since each finite set is compact we get that the topology 7 is stronger than
k|o(r)- As a neighborhood base at the unit element & € &t(R) (which determines
%) can be taken the family {Pe}ec(on) of the sets Pe = {0y : oy ([—1,1]) C Ve},
where Ve = {E € T: & =€/9,0 € (—¢,¢€)}. Clearly P = a((—¢, €)) and, therefore,
7 = o(t) the homeomorphic image of the Euclidean topology 7 on R.

The mentioned topologies on ¢ (R) determine two different factorizations of
the mapping ¢, which are presented in the following diagram:

(a(R) =R, a(t) = 1)
(R, %) < (G,K)
(a(R),

k‘a(R))

In this diagram « is a homeomorphism, ¢} is a continuous homomorphism
and the insertion @ : oy — oy|T" as well as the embedding o) are continuous.
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The group o(R) is a path-connected group in both topologies as the image
of a path-connected space under the continuous mappings @ and ;. Moreover, we
claim that these path-connectednesses are equivalent. Indeed, the path-connectedness
of a(R) with respect to the topology 7 clearly implies the path-connectedness with
respect to the weaker topology k\a(R). Let us now prove the converse statement.

Lemma 2.1. Any path

c:1=[0,1] = a(R),
that is continuous with respect to the topology k|a(R) is also continuous with respect
to the topology T = (7).

Proof. Let us first prove the continuity of a path ¢ at the point 7y €
with o (o) = o, using the fact that {P }¢c(g x) is the neighborhood base at o in a
topology Z. Let us fix any € € (0, ) and consider the corresponding

Pe={o:0o([-1,1]) CVe} = a((—¢,¢))
as the neighborhood of oy in a topology 7. The set

Qe = {04 : (1) C Ve } = Upezt(1y)
is then a neighborhood of o in a topology kq(r), where I, = (27tn—€,2nn+€),
n € Z. Obviously we have P: C Q.

We have that ¢ is continuous at fy with respect to the topology k\a(R). There-
fore, there exists a 8 > 0 such that 6(I5) C Q, where I = (1o — 8,10+ 6) NI. We
want to show that 6(/5/) C Pe.

_ Indeed, the continuum &(/52), which is contained in ¢ (/s), is covered by the
set Qe = {a : (1) CVe} =U,eza(l,), which is a countable union of compact and
therefore closed sets o (7,,) By Sierpinski’s theorem (see [S]) at most one of these
sets is non-empty. Since the set o(I5/,) certainly intersects with a(lo), then (/o)
would be the mentioned unique non-empty set.

It follows that 6 (I5/,) C ot(Ip) N Qe = 0t(ly) = Pe, as desired.

The general case is reduced to the considered situation by the transitions from
o to 6(t) = o(to) "' o(t) and back again, using the fact that the shifts by & (#) ! and
o (1) are topological automorphisms of ¢ (IR) in both topologies k o) and 7. [

The mapping & : R — G generates an embedding
@:C—A i z=1+iys @, = e ™.
The transition from « to @ complexifies the above diagram keeping the properties of
the mappings in it.
The topology Tyo o(©)’ which is induced on ¢@(C) by a topology

Tao = k X T(g 1), is weaker than the topology T, = @(7.), which is the homeo-
morphic image of the Euclidean topology 7. on C. The topology ¢(7.) has two
other equivalent descriptions: it emerges as a product of topologies % X 7 ) with
{P: x (6*5,65)}86(07”)7&0 being the neighborhood base at the unit element
(ap,1) = @(0) and as a compact-open topology on ¢(C) with the neighborhood
base at the unit element formed by the sets

P£,8 = {(Pz : (Pz([_la 1]) C Vs,é} = (P(K£,8)>8 € (O,ﬂ), 0> 0,
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where Vo5 = {w = pe'® : e® < p < %% € V}, and the sets
K. 5 ={z=1t+iy:|t| <e&,l|y| < J} obviously form the neighborhood base at the
zero element z = 0 of a group C.

Note that since o(R) is dense in G the image ¢ (C) is dense in both A? and A.

Definition 2.1. Forapoints € A the set C; = s¢(C) is called a plane
in A passing through s.

Obviously, C; is dense in A? for any s € A?. We also denote

Co:= (C(P(()) = (P(C)

Define a mapping ¢, : C — C; : z+— s¢.. Again there are two topologies on each plane
C;: the topology T, := Tpo o which is induced from A° and the stronger topology

Top = 5Tp = {sU : U € 75}, which is inherited from C by the mapping ¢;.

3. Topologies Induced by Coverings. The theory of Bohr—Riemann surfaces
considers so called thin sets K in A [2] and investigates the finite-sheeted coverings
( [6], §4) of the space A* = AY\ K. So, we now pass to the situation which often
arises in that theory.

Let s € A” and let K be a closed nowhere dense subset of A such that the
intersection K N Cj is a discrete set. Define A* = A?\ K and C! = C;NA* = C,\ K.

Let us consider the preimage 7~ !(C?) under unfolded, finite-sheeted covering
7w : X — A", where X is a topological space. There are two topologies that arise on
7~ !(C?): the topology Ts,x , Which is induced from a topology 7x of the space X and is

locally homeomorphic to T} = 7, ‘ o’ and the topology 7, ¢, which base consists of the

path-connected components of the sets from 7, x. Thus, using the characterization of
Typ as a topology with a base consisted of the path-connected components of the sets

from 7, we get that the restriction induces two coverings of the punctured

-1 (C*
plane C;: 7y x : Tox — 7, and 7, ¢ @ Ty (—;)Tj(p.

Theorem 3. 1. The path-connected components of a subspace 7! (C})
in the topology 7, x coincide with the path-connected components of a Riemann
surface 7~ 1(C?) in 7, c.

Proof.Letxcn !(C})andlet C and D, be the path-connected components
of the preimage 7~ !(C?) containing x in the topologies Ts,c and Ty x respectively.
Since 7, ¢ is stronger than 7, x it follows that C, C D,. Let us proof the converse
inclusion. Fix an arbitrary point y € D, and connect it with x by a path

y:1=10,1] = X,
which lies in D, and which is continuous with respect to the topology 7, x.

Then A = woy: I — C} is a continuous path from 1:‘ ; to 7. Temporarily

forgetting about the stars we get that A is a continuous path from 7 ‘[ to T, and,

~

therefore, s~ 'A : I — Cy is a continuous path from 1:‘ ; 0 T = TAO‘ c, =
= K| g ) X T(0-40)-
Using the interpretation of a space A as a Cartesian product G x (0, ) we get

that the mapping
sTIA T — Co
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is comprised of the pair of mappings s 'A(t) = (B(¢),r(t)),t € I, with B : I —
— o(R) and 7 : I — (0, +o0). Then, as we know (see, e.g., [5]), the mapping s~' A is
continuous if and only if B is a continuous mapping from T‘ , to k‘ a(R) and r is a

continuous mapping from T‘ ; 10 T o). Thus, by Lemma 2.1, we get that the path
B : I — a(R) is continuous with respect to the topology T = o(7) as well. This
together with the arguments above shows that the mapping s~ 'A (1) = (B(z), r(t)),
t €1, is continuous with respect to the topology & X T o) = Tp, 6. A is a
continuous path from T‘ ; 10 Ty and, therefore, to r;(p as well. The continuity of
the path y with respect to the topology T ¢ is obtained from the local homeomor-
phity of 7 as a covering 7, c : 7~ (C}) — C from 7, ¢ to Tjp- Thus, y € C,. This
completes the proof of the Theorem. O
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