PROCEEDINGS OF THE YEREVAN STATE UNIVERSITY

Physical and Mathematical Sciences

2014, № 3, p. 13-15

Mathematics

ON SOLVABILITY OF PSEUDODIFFERENTIAL EQUATIONS IN SPACES WITH QUASIHOMOGENEOUS NORM

A. A. DAVTYAN * S. V. GHAZARYAN**

Chair of General Mathematics YSU, Armenia

In the article solvability questions for a class of pseudodifferential operators with quasihomogeneous nongenerate on the unit sphere symbol in spaces of anisotropic potentials or, in other words, spaces with quasihomogeneous norm are studied.

MSC2010: 26A33; 35S10.

Keywords: pseudodifferential operators, anisotropic potentials, spaces with quasihomogeneous norm.

Let R_n be the Euclidean space with points $x = (x_1, x_2, ..., x_n), r = (r_1, r_2, ..., r_n)$ a vector with positive components, $\frac{1}{r^*} = \frac{1}{n} \sum_{j=1}^{n} \frac{1}{r_j}$, and $\lambda = (\lambda_1, \lambda_2, ..., \lambda_n)$, where $\lambda_j = \frac{r^*}{r_j}, j = 1, 2, ..., n$. By $\rho(x)$ we denote the function, positive for $x \neq 0$, defined implicitly by the equality

$$\sum_{i=1}^n x_i^2 \rho^{-2\lambda_i} = 1.$$

Let I_r be a pseudodifferential operator (Ψ DO) with the symbol $\rho^{r^*}(\xi)$, $I^r \varphi = F^{-1}(\rho^{r^*}(\xi)F\varphi(\xi))$, where F and F^{-1} are direct and inverse Fourier transforms. If $r_1 = r_2 = ... = r_n = 0$, then $I_r = I$ is the identity operator. When $0 < -r^* < n$, the operator I_r is called anisotropic (Riesz) potential.

It is natural (see [1]) to denote the completion of $C_0^{\infty}(\mathbb{R}^n)$ in the norm

 $||f|| = ||F^{-1}(\rho^{r^*}(\xi)F\varphi(\xi))||_p, \quad 1$

by the symbol \dot{w}_p^r (see also [2, 3]) and call it a space with quasihomogeneous norm or space of anisotropic potentials. If $r^* < n/p$, then \dot{w}_p^r is the space of functions representable by anisotropic potentials. When $r^* \ge n/p$ the space \dot{w}_p^r is no longer a function space; its elements are classes, in which the functions that differ by corresponding polynomials are identified [1,4].

^{*} E-mail: davtyan-an@mail.ru ** E-mail: susanna.ghazaryan56@gmail.com

When $r_1 = r_2 = ... = r_n = 0$, we set $\dot{w}_p^r = L_p(R_n)$. The space \dot{w}_p^{-r} is defined as the dual of \dot{w}_p^r .

Suppose that the function $K(\xi)$ is λ -homogeneous of degree s, $-\infty < s < \infty$, i.e. for every t > 0 and arbitrary $\xi \neq 0$, $K(t^{\lambda}\xi) \equiv K(t^{\lambda_1}\xi_1, ..., t^{\lambda_n}\xi_n) = t^s K(\xi)$. As is shown in [1], continuous for $\xi \neq 0$, λ -homogeneous $K(\xi)$ function is the symbol of a bounded operator

$$K: \dot{w}_2^r \rightarrow \dot{w}_2^{\kappa r},$$

where $\kappa = 1 - s/r^*$ and $\kappa r = (\kappa r_1, ..., \kappa r_n)$.

Let $\Psi = (\Psi_{jk}), j = 0, 1, ..., M - 1, k = 0, 1, ..., N - 1$, be the matrix of Ψ DO Ψ_{jk} with the symbol $\Psi_{jk}(\xi)$ continuous for $\xi \neq 0$ and λ -homogeneous of degree $\alpha_j - \beta_k$:

$$\Psi_{jk}(t^{\lambda_1}\xi_1,...,t^{\lambda_n}\xi_n) = t^{\alpha_j - \beta_k}\Psi_{jk}(\xi), \quad \text{for } t > 0, \ -\infty < \alpha_j, \beta_k < \infty,$$
$$u = (u_0, u_1, ..., u_{N-1}), \ f = (f_0, f_1, ..., f_{M-1}).$$

Now we consider the solvability of the system of equations

$$\Psi u = f$$
 in \dot{w}_2^r .

Т h е о г е m. Тhе ΨDO

$$\Psi: \prod_{k=0}^{N-1} \dot{w}_2^{(1-\beta_k/r^*)r} \quad \to \prod_{j=0}^{M-1} \dot{w}_2^{(1-\alpha_j/r^*)r}$$

is bounded and left-invertible (right-invertible) if and only if $\operatorname{rank}(\Psi_{jk}(\xi)) = N$ (respectively *M*) for all $\xi \neq 0$.

P r o o f. The case M = N = 1 of the Theorem was proved in [5].

Denot by $Q(\xi)$ the matrix $(Q_{jk}(\xi))$ with elements

$$Q_{jk}(\xi) = \rho^{\beta_k - \alpha_j} \Psi_{jk}(\xi), \ j = 0, 1, ..., M - 1; \ k = 0, 1, ..., N - 1,$$

and by $I_1(\xi)(I_2(\xi))$ the diagonal $M \times M$ $(N \times N)$ matrix with $\rho^{r*-\alpha_j}(\xi)$ (respectively $\rho^{\beta_k - r^*}(\xi)$) elements on the main diagonal. The matrices $Q(\xi), I_1(\xi), I_2(\xi)$ are the symbols of bounded operators Q, I_1, I_2 satisfaying

$$Q = I_1 \Psi I_2 : \prod_{k=0}^{N-1} L_2(R_n) \quad \rightarrow \prod_{j=0}^{M-1} L_2(R_n).$$

But the operators I_1 and I_2 are isomorphisms between the appropriate spaces with quasihomogeneous norms, so, Ψ is left invertible (right invertible) if and only if Q has left (right) inverse and rank $\Psi(\xi)$ = rank $Q(\xi)$ for all $\xi \neq 0$.

Suppose rank $Q(\xi) = N$ for each $\xi \neq 0$ (and so N = M).

Set $K(\xi) = (Q^*(\xi)Q(\xi))^{-1}Q^*(\xi)$, where $Q^*(\xi)$ is the conjugate transposition of $Q(\xi)$. Then the elements of $K(\xi)$ are continuous for $\xi \neq 0$, λ -homogeneous of degree 0 and $K(\xi)Q(\xi) = I$. So, $K(\xi)$ is the symbol of a bounded left inverse of Q.

Conversely, if rank $Q(\eta) < N$ for some $\eta \neq 0$, i.e. there exists a unit vector $c = (c_0, ..., c_{N-1})$ such that $Q(\eta)c = 0$. Take $\varphi \in C_0^{\infty}(\mathbb{R}^n)$ with $\varphi(\xi) \ge 0$ for all ξ , $\varphi(\xi) = 0$ for $|\xi| > 1$ and $\|\varphi\|_2 = 1$.

For $\varepsilon > 0$, it is set $g_{\varepsilon} = (g_{\varepsilon 0}, ..., g_{\varepsilon k-1}), g_{\varepsilon k}(\xi) = \varepsilon^{\frac{n}{2}} \varphi \left(\frac{\xi - \eta}{\varepsilon}\right) c_k$, where k = 0, ..., N - 1. Then

$$\left\|g_{\varepsilon},\prod_{k=0}^{N-1}L_{2}\right\|^{2} = \sum_{k=0}^{N-1}\|g_{\varepsilon k}\|_{2}^{2} = \sum_{k=0}^{N-1}c_{k}^{2}\varepsilon^{-n}\int_{\mathbb{R}^{n}}\left|\varphi\left(\frac{\xi-\eta}{\varepsilon}\right)\right|^{2}d\xi = 1$$

Let f_{ε} be the inverse Fourier transform of g_{ε} . Then, by Placherel's theorem,

$$\left\|f_{\varepsilon}, \prod_{k=0}^{N-1} L_2\right\| = 1.$$

But

$$egin{aligned} &\left|\mathcal{Q}f_arepsilon,\prod_{j=0}^{M-1}L_2
ight\|^2 &=\sum_{j=0}^{M-1}\int_{|\xi-arepsilon|$$

since $Q_{jk}(\xi)$ are continuous in η and $Q(\eta)c = 0$. This disrupts the criterion of the existence of a left inverse operator, so, Q is not left invertible.

Since Q^* the adjoint of Q is a Ψ DO with the symbol $Q^*(\xi)$ it has left inverse if and only if rank $Q(\xi) = M$.

To complete the proof of Theorem it remains to use duality.

Received 16.07.2014

REFERENCES

- 1. Davtyan A.A. Sobolev–Liouville Spaces with Quasihomogeneous Norm. // Izv. Vyssh. Uchebn. Zaved. Matem., 1986, v. 5, p. 82–84 (in Russian).
- 2. **Sobolev S.L.** Introduction to the Theory of Quadrature Formulas. M.: Nauka, 1974 (in Russian).
- Lizorkin P.I. About the Riesz Potentials of Arbitrary Order. // Proc. Steklov Inst. Matem., 1969, v. 105, p. 174–197 (in Russian).
- 4. **Pryde A.J.** Spaces with Homogeneous Norms. // Bull. Austral. Math. Soc., 1980, v. 21, p.189–205.
- Davtyan A.A. Anisotropic Potentials, their Inversion and Some Applications. // Soviet Matem. Dokl., 1985, v. 32, № 3, p. 717–721 (in Russian).