ON SOLVABILITY OF PSEUDODIFFERENTIAL EQUATIONS IN SPACES WITH QUASIHOMOGENEOUS NORM

A. A. DAVTYAN * S. V. GHAZARYAN**

Chair of General Mathematics YSU, Armenia

Abstract

In the article solvability questions for a class of pseudodifferential operators with quasihomogeneous nongenerate on the unit sphere symbol in spaces of anisotropic potentials or, in other words, spaces with quasihomogeneous norm are studied.

MSC2010: 26A33; 35S10.
Keywords: pseudodifferential operators, anisotropic potentials, spaces with quasihomogeneous norm.

Let R_{n} be the Euclidean space with points $x=\left(x_{1}, x_{2}, \ldots, x_{n}\right), r=\left(r_{1}, r_{2}, \ldots, r_{n}\right)$ a vector with positive components, $\frac{1}{r^{*}}=\frac{1}{n} \sum_{1}^{n} \frac{1}{r_{j}}$, and $\lambda=\left(\lambda_{1}, \lambda_{2}, \ldots, \lambda_{n}\right)$, where $\lambda_{j}=\frac{r *}{r_{j}}, j=1,2, \ldots, n$. By $\rho(x)$ we denote the function, positive for $x \neq 0$, defined implicitly by the equality

$$
\sum_{i=1}^{n} x_{i}^{2} \rho^{-2 \lambda_{i}}=1
$$

Let I_{r} be a pseudodifferential operator ($\Psi \mathrm{DO}$) with the symbol $\rho^{r^{*}}(\xi)$, $I^{r} \varphi=F^{-1}\left(\rho^{r^{*}}(\xi) F \varphi(\xi)\right)$, where F and F^{-1} are direct and inverse Fourier transforms. If $r_{1}=r_{2}=\ldots=r_{n}=0$, then $I_{r}=I$ is the identity operator. When $0<-r^{*}<n$, the operator I_{r} is called anisotropic (Riesz) potential.

It is natural (see [1]) to denote the completion of $C_{0}^{\infty}\left(R^{n}\right)$ in the norm

$$
\|f\|=\left\|F^{-1}\left(\rho^{r^{*}}(\xi) F \varphi(\xi)\right)\right\|_{p}, \quad 1<p<\infty
$$

by the symbol $\dot{\mathrm{w}}_{\mathrm{p}}^{\mathrm{r}}$ (see also [2,3]) and call it a space with quasihomogeneous norm or space of anisotropic potentials. If $r^{*}<n / p$, then $\dot{\mathrm{w}}_{\mathrm{p}}^{\mathrm{r}}$ is the space of functions representable by anisotropic potentials. When $r^{*} \geq n / p$ the space $\dot{\mathrm{w}}_{\mathrm{p}}^{\mathrm{r}}$ is no longer a function space; its elements are classes, in which the functions that differ by corresponding polynomials are identified [1,4].

[^0]When $r_{1}=r_{2}=\ldots=r_{n}=0$, we set $\dot{\mathrm{w}}_{\mathrm{p}}^{\mathrm{r}}=L_{p}\left(R_{n}\right)$. The space $\dot{\mathrm{w}}_{\mathrm{p}}^{-\mathrm{r}}$ is defined as the dual of $\dot{\mathrm{w}}_{\mathrm{p}}^{\mathrm{r}}$.

Suppose that the function $K(\xi)$ is λ-homogeneous of degree $\mathrm{s},-\infty<\mathrm{s}<\infty$, i.e. for every $t>0$ and arbitrary $\xi \neq 0, K\left(t^{\lambda} \xi\right) \equiv K\left(t^{\lambda_{1}} \xi_{1}, \ldots, t^{\lambda_{n}} \xi_{n}\right)=t^{s} K(\xi)$. As is shown in [1], continuous for $\xi \neq 0, \lambda$-homogeneous $K(\xi)$ function is the symbol of a bounded operator

$$
K: \dot{\mathrm{w}}_{2}^{\mathrm{r}} \quad \rightarrow \quad \dot{\mathrm{w}}_{2}^{\mathrm{Kr}}
$$

where $\kappa=1-\mathrm{s} / \mathrm{r}^{*}$ and $\kappa \mathrm{r}=\left(\kappa \mathrm{r}_{1}, \ldots, \kappa r_{n}\right)$.
Let $\Psi=\left(\Psi_{j k}\right), j=0,1, \ldots, M-1, k=0,1, \ldots, N-1$, be the matrix of $\Psi \mathrm{DO}$ $\Psi_{j k}$ with the symbol $\Psi_{j k}(\xi)$ continuous for $\xi \neq 0$ and λ-homogeneous of degree $\alpha_{j}-\beta_{k}$:

$$
\begin{gathered}
\Psi_{j k}\left(t^{\lambda_{1}} \xi_{1}, \ldots, t^{\lambda_{n}} \xi_{n}\right)=t^{\alpha_{j}-\beta_{k}} \Psi_{j k}(\xi), \quad \text { for } t>0,-\infty<\alpha_{j}, \beta_{k}<\infty \\
u=\left(u_{0}, u_{1}, \ldots, u_{N-1}\right), f=\left(f_{0}, f_{1}, \ldots, f_{M-1}\right)
\end{gathered}
$$

Now we consider the solvability of the system of equations

$$
\Psi u=f \quad \text { in } \quad \dot{\mathrm{w}}_{2}^{\mathrm{r}} .
$$

Theorem. The 世DO

$$
\Psi: \prod_{k=0}^{N-1} \dot{\mathrm{w}}_{2}^{\left(1-\beta_{k} / \mathrm{r}^{*}\right) \mathrm{r}} \rightarrow \prod_{\mathrm{j}=0}^{\mathrm{M}-1} \dot{\mathrm{w}}_{2}^{\left(1-\alpha_{j} / \mathrm{r}^{*}\right) \mathrm{r}}
$$

is bounded and left-invertible (right-invertible) if and only if $\operatorname{rank}\left(\Psi_{j k}(\xi)\right)=N$ (respectively M) for all $\xi \neq 0$.

Proof. The case $M=N=1$ of the Theorem was proved in [5].
Denot by $Q(\xi)$ the matrix $\left(Q_{j k}(\xi)\right)$ with elements

$$
Q_{j k}(\xi)=\rho^{\beta_{k}-\alpha_{j}} \Psi_{j k}(\xi), j=0,1, \ldots, M-1 ; k=0,1, \ldots, N-1
$$

and by $I_{1}(\xi)\left(I_{2}(\xi)\right)$ the diagonal $M \times M(N \times N)$ matrix with $\rho^{r *-\alpha_{j}}(\xi)$ (respectively $\rho^{\beta_{k}-r^{*}}(\xi)$) elements on the main diagonal. The matrices $Q(\xi), I_{1}(\xi), I_{2}(\xi)$ are the symbols of bounded operators Q, I_{1}, I_{2} satisfaying

$$
Q=I_{1} \Psi I_{2}: \prod_{k=0}^{N-1} L_{2}\left(R_{n}\right) \quad \rightarrow \prod_{\mathrm{j}=0}^{\mathrm{M}-1} L_{2}\left(R_{n}\right)
$$

But the operators I_{1} and I_{2} are isomorphisms between the appropriate spaces with quasihomogeneous norms, so, Ψ is left invertible (right invertible) if and only if Q has left (right) inverse and rank $\Psi(\xi)=\operatorname{rank} Q(\xi)$ for all $\xi \neq 0$.

Suppose $\operatorname{rank} Q(\xi)=N$ for each $\xi \neq 0$ (and so $N=M$).
Set $K(\xi)=\left(Q^{*}(\xi) Q(\xi)\right)^{-1} Q^{*}(\xi)$, where $Q^{*}(\xi)$ is the conjugate transposition of $Q(\xi)$. Then the elements of $K(\xi)$ are continuous for $\xi \neq 0$, λ-homogeneous of degree 0 and $K(\xi) Q(\xi)=I$. So, $K(\xi)$ is the symbol of a bounded left inverse of Q.

Conversely, if $\operatorname{rank} Q(\eta)<N$ for some $\eta \neq 0$, i.e. there exists a unit vector $c=\left(c_{0}, \ldots, c_{N-1}\right)$ such that $Q(\eta) c=0$. Take $\varphi \in C_{0}^{\infty}\left(R^{n}\right)$ with $\varphi(\xi) \geq 0$ for all $\xi, \varphi(\xi)=0$ for $|\xi|>1$ and $\|\varphi\|_{2}=1$.

For $\varepsilon>0$, it is set $g_{\varepsilon}=\left(g_{\varepsilon 0}, \ldots, g_{\varepsilon k-1}\right), g_{\varepsilon k}(\xi)=\varepsilon^{\frac{n}{2}} \varphi\left(\frac{\xi-\eta}{\varepsilon}\right) c_{k}$, where $k=0, \ldots, N-1$. Then

$$
\left\|g_{\varepsilon}, \prod_{k=0}^{N-1} L_{2}\right\|^{2}=\sum_{k=0}^{N-1}\left\|g_{\varepsilon k}\right\|_{2}^{2}=\sum_{k=0}^{N-1} c_{k}^{2} \varepsilon^{-n} \int_{R^{n}}\left|\varphi\left(\frac{\xi-\eta}{\varepsilon}\right)\right|^{2} d \xi=1
$$

Let f_{ε} be the inverse Fourier transform of g_{ε}. Then, by Placherel's theorem,

$$
\left\|f_{\mathcal{E}}, \prod_{k=0}^{N-1} L_{2}\right\|=1
$$

But

$$
\begin{aligned}
& \left\|Q f_{\varepsilon}, \prod_{j=0}^{M-1} L_{2}\right\|^{2}=\sum_{j=0}^{M-1} \int_{|\xi-\varepsilon|<\varepsilon} \varepsilon^{-n}\left|\sum_{k=0}^{N-1} Q_{j k}(\xi) \varphi\left(\frac{\xi-\eta}{\varepsilon}\right) c_{k}\right|^{2} d \xi \leq \\
& \quad \leq \sum_{j=0}^{M-1} \sup _{|\xi-\eta|<\varepsilon}\left|\sum_{k=0}^{N-1} Q_{j k}(\xi) c_{k}\right|^{2} \rightarrow \quad 0 \quad \text { as } \quad \varepsilon \rightarrow 0,
\end{aligned}
$$

since $Q_{j k}(\xi)$ are continuous in η and $Q(\eta) c=0$. This disrupts the criterion of the existence of a left inverse operator, so, Q is not left invertible.

Since Q^{*} the adjoint of Q is a $\Psi D O$ with the symbol $Q^{*}(\xi)$ it has left inverse if and only if $\operatorname{rank} Q(\xi)=M$.

To complete the proof of Theorem it remains to use duality.

Received 16.07.2014

REFERENCES

1. Davtyan A.A. Sobolev-Liouville Spaces with Quasihomogeneous Norm. // Izv. Vyssh. Uchebn. Zaved. Matem., 1986, v. 5, p. 82-84 (in Russian).
2. Sobolev S.L. Introduction to the Theory of Quadrature Formulas. M.: Nauka, 1974 (in Russian).
3. Lizorkin P.I. About the Riesz Potentials of Arbitrary Order. // Proc. Steklov Inst. Matem., 1969, v. 105, p. 174-197 (in Russian).
4. Pryde A.J. Spaces with Homogeneous Norms. // Bull. Austral. Math. Soc., 1980, v. 21, p.189-205.
5. Davtyan A.A. Anisotropic Potentials, their Inversion and Some Applications. // Soviet Matem. Dokl., 1985, v. 32, № 3, p. 717-721 (in Russian).

[^0]: * E-mail: davtyan-an@mail.ru $\quad{ }^{* *}$ E-mail: susanna.ghazaryan56@gmail.com

