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In this paper we consider the C∗-subalgebra Tm of the Toeplitz algebra T

generated by monomials, which have an index divisible by m. We present the
algebra Tm as a crossed product: Tm = ϕ(A)×δm Z, where A = C0(Z+)⊕CI
is C∗-algebra of all continuous functions on Z+, which have a finite limit at
infinity. In the case m = 1 we obtain that T = ϕ(A)×δ1 Z, which is an analogue
of Coburn’s theorem.
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1. Introduction. The crossed product of a C∗-algebra A by an automorphism
α : A→ A is defined as a universal C∗-algebra generated by a copy of A and a unitary
element U , satisfying the relations

α(a) =UaU∗,α−1(a) =U∗aU, a ∈ A.

In order to define the crossed product of a C∗-algebra A by an endomorphism,
that is, to replace an automorphism with an endomorphism in the above definition, it
is necessary answer the following questions:

(1) What criterias should the element U satisfy?

(2) What should be used in place of α?

There is a number of methods to construct a new C∗-algebra (which is an
extension of A) using a given C∗-algebra A and an endomorphism α : A → A.
As a result of an extension we get a new algebra, which is called crossed product,
and this new algebra contains the algebra A as a subalgebra. In the works of many
authors [1–6] there are diverse methods of constructing crossed product, where they
find answers to the questions above from different aspects.

In the paper [4] Exel investigates the notion of the transfer operator L of C∗

dynamical system (A,α), which satisfies certain conditions, and, as a matter of fact
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plays role of α−1. In this case crossed product is defined as a universal C∗-algebra
generated by a copy of A and an unitary element S, which generates the transfer
operator L, and satisfies certain conditions.

In the work [5] Lebedev and Odzijevich give an extension of C∗-algebra by
partial isometries. They introduce the notion of so-called coefficient algebra, which
plays a crucial role both in the extensions of C∗-algebras by partial isometries and in
the construction of the crossed product by an endomorphism. As we will see, initially
given algebra will be a coefficient algebra of crossed product.

A new method of an extension of C∗-algebra by ismotries was introduced by
Pashque [2]. He gives conditions, in which the C∗-algebra C∗(A,S), which is the
extension of C∗-algebra by isomorphism S, both is isomorphic to A×α S, and as a
C∗-algebra is simple.

In the paper [6] a new method of an extension and a construction of a crossed
product is given. A crossed product is constructed by coefficient an algebra, using
the transfer operator introduced by Exel. In the paper authors prove, that the crossed
products constructed in different ways are isomorphic to the crossed product intro-
duced in [6].

In this paper we begin the study of C∗-subalgebra of the Toeplitz algebra
T, generated by monomials, which have an index divisible by m. We denote that
C∗-algebra by Tm. The aim of this work is to show that: for any m ∈ N the
C∗-algebra Tm is represented as a crossed product of the C∗-algebra C0(Z+)⊕CI of
all continuous functions on Z+, which have a finite limit at infinity by the endomor-
phism δm(a) = T maT ∗m. The construction of crossed product, introduced in [6] is
used.

2. Preliminaries and Definition of the Crossed Product. In this part we re-
call some definitions and facts concerning transfer operators and coefficient algebras
and, as we will see, it will be used in the following parts of this work. Presented
definitions and results are taken from [4–6].

Let B be a C∗-algebra with an identity 1 and let δ∗ : B→ B be an endomor-
phism of this algebra. A linear map δ∗ : B→ B is called a transfer operator for the
pair (B,δ ), if it is continuous and positive and such that

δ∗(δ (a)b) = a δ (b), ∀a,b ∈ B.

Transfer operator is called full, if

δδ∗(a) = δ (1)a δ (1), a ∈ B.

Let A ⊂ B(H) be a *-subalgebra containing the identity I ∈ B(H), and let
V ∈ B(H). We call A the coefficient algebra of the C∗-algebra C∗(A,V ) generated
by A and V, if A and V satisfy the following three conditions:

Va =VaV ∗V, a ∈ A; (2.1)

VaV ∗ ∈ A, a ∈ A; (2.2)

V ∗aV ∈ A, a ∈ A. (2.3)
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D e f i n i t i o n 2 . 1 . Let δ be an endomorphism of an (abstract)
unital C∗-algebra A. We say that the pair (A,δ ) is finitely representable, if there
exists a triple (H,π,U) consisting of a Hilbert space H, a faithful representation
π : A→ B(H) and a linear continuous operator U : H→H such that for every a ∈ A
the following conditions are satisfied:

π(δ (a)) =Uπ(a)U∗, U∗π(a)U ∈ π(A), (2.4)

Uπ(a) = π(δ (a))U, a ∈ A. (2.5)

That is, π(A) is the coefficient algebra for C∗(π(A),U) under the fixed endomor-
phism U ·U∗.

In this case we also say that A is a coefficient algebra associated with δ .
T h e o r e m 2 . 1 ( [6], Theorem 3.1). A pair (A,δ ) is finitely representable,

if and only if there exists a full transfer operator δ∗.
D e f i n i t i o n 2 . 2 (Crossed product). Let (A,δ ) be a finitely repre-

sentable pair. The crossed product of A and δ (which we denote by A×δ Z ) is
the universal unital C∗-algebra generated by a copy of A and a partial isometry U
satisfies to the relations

δ (a) =UaU∗, δ∗(a) =U∗aU, a ∈ A,

where δ∗ is the full transfer operator for (A,δ ). The algebra A will be called the
coefficient algebra for A×δ Z.

L e m m a 2 . 1 ( [6], Proposition 2.3). Let A be the coefficient algebra of
C∗(A,V ). Then the vector space B0 consisting of finite sums

x =V ∗Na−N + ...+V ∗a−1 +a0 +a1V + ...+aNV N , (2.6)

where ak ∈ A, N ∈ N∪0, is a dense *-subalgebra of C∗(A,V ).
D e f i n i t i o n 2 . 3 . We say that a C∗-algebra C∗(A,V ), mentioned in

Definition 2.1, possesses property (*), if for any x∈B0 (given by (2.6)), the inequality

‖ a0 ‖≤‖ x ‖ (2.7)

holds.

3. The C∗-Algebra Tm. Let l2(Z+) be a Hilbert space of all complex-valued
functions on Z+ satisfying

f : Z+→ C,
∞

∑
n=0
| f (n)|2 < ∞.

The set of the functions {en}∞
n=0, en(m) = δn,m, forms an orthonormal basis in l2(Z+),

where δn,m is the Kronecker symbol.
Let T be the right shift operator on l2(Z+), that is

Tek = ek+1.

Obviously, T ∗T = I, where T ∗ is the adjoint of T , that is the left shift operator.
Denote by B(l2(Z+)) the algebra of all bounded linear operators on l2(Z+).



Hovsepyan K. H. The C∗-Algebra Tm as a Crossed Product. 27

In this way T T ∗ is a projection on l2(Z+{0}). Therefore, the semigroup gen-
erated by T and T ∗ forms bicyclic semigroup. Hence, each finite product of the
operators T and T ∗ has a form T nT ∗m, where n,m ∈ Z+. Such elements are called
monomials, and the number n−m is an index of the monomial T nT ∗m and is denoted
ind(T T ∗m). Thus, the Toeplitz algebra, which is denoted by T, is a uniform closure
of the involutive subalgebra generated by finite linear combinations of monomials
of B(l2(Z+)). Denote by Tm C∗-subalgebra of the Toeplitz algebra, generated by
monomials, which have an index divisible by m.

4. The C∗-Algebra Tm as a Crossed Product. Let us consider a C∗-algebra
A=C0(Z+)⊕CI, i. e. the algebra of continuous functions on Z+, which have finite
limits at infinity.

Denote by the P commutative C∗-subalgebra of Tm, which consists of the
projections

P= [I,T T ∗, ...,T mT ∗m, ...].

We denote the projections by Pi = T iT ∗i , where i = 0,1, ...
L e m m a 4 . 1 . There exists an isomorphism between C∗-algebras P and A:

P∼=A.

P r o o f . Define a homomorphism ϕ : A→ P in the following way:

ϕ( f ) =
∞

∑
n=0

f (n)Qn,

where Qi = Pi−1−Pi, i = 1,2, ..., are orthonormal projectors.

It is easy to see that ϕ( f g) =
∞

∑
n=0

( f g)(n)Qn =
∞

∑
n=0

f (n)g(n)Qn = ϕ( f )ϕ(g),

for any f ,g ∈A. Clearly, ϕ(I) = I, that is ϕ is an isomorphism. �
Consider a C∗-dynamical system (P,δm), where the endomorphism

δm : P→ P is defined as follows:

δm(a) = T maT ∗m, a ∈ P. (4.1)

Since T m is an isomorphic operator obviously the pair (P,δm) satisfies the
conditions (2.2) – (2.4). Denote

δ∗m := T ∗maT m, a ∈ P. (4.2)

L e m m a 4 . 2 . The map δ∗m defined above is a full transfer operator for the
pair (P,δm).

P r o o f . It is evident that δ∗m is a positive operator. Moreover,

δm(δ∗m(a)b) = T ∗m(T maT ∗mb)T m = aT ∗mbT m = a, a,b ∈ P.

This means that δ∗m is a transfer operator fot the pair (P,δm). Now we show that δ∗m
is a full transfer operator:

δm(δ∗m(a)) = T mT ∗maT mT ∗m = δm(1)aδm(1). �

It follows from the Lemma 4.2 and Theorem 2.1, that a pair (P,δm) is finitely
representable. Hence we have that the pair (P,δm) satisfies all the conditions of
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Definition 2.2. Therefore, we can construct a crossed product P×δm Z+, which is a
universal unital C∗-algebra generated by P and T m.

The main purpose of this paper is to show that

P×δm Z+ = Tm.

Let us consider a triple (π, l2(Z+)),T m), where π : P→ B(l2(Z+)) is a rep-
resentation, which acts identically: π(a) = a,a ∈ P. It is evident that π is a faithful
representation. Obviously (π, l2(Z+)),T m) satisfies the conditions (2.4), (2.5). Con-
sider the C∗-algebra C∗(π(P),T m) =C∗(P,T m) generated by an algebra π(P) = P

and T m. Using the fact, that (P,T m) satisfies the conditions (2.4), (2.5), we obtain
that P is a coefficient algebra for the C∗-algebra C∗(π(P),T m). Denote by C0 a
vector space consisting of finite sums of the form (2,6), where ak ∈ P.

L e m m a 4 . 3 . C∗-algebra C∗(P,T m) generated by algebra P and by the
operator T m coincides with Tm.

P r o o f . Observe that finite linear combination of monomial is dense in Tm

and C0 is dense in C∗(P,T m) and, therefore, in order to prove the Lemma we need
to show that we can obtain any element from C0 by the monomials, and conversely,
any element of C0 can be obtained by monomials. Since P is the coefficient algebra
for C∗(P,T m), then we can represent x ∈C0 in the following way:

x = (T m)∗Na−N + ...+(T m)∗a−1 +a0 +a1T m + ...+aN(T m)N , ak,a−k ∈ P. (4.3)

In this decomposition an index of each summand is divisible by m. Indeed,

ind((T m)∗ka−k) = ind((T m)∗k)+ ind(a−k) = ind((T m)∗k) = mk,

as the index of each element from P is equal to 0. Now we show the opposite part. Let
V be any monomial from Tm: V = T mk+iT ∗i,1≤ i < m. Then V can be represented
as: V = (T m)kT iT ∗i. If in the decomposition (2.7) we take a0 = T iT ∗i

and ak = 0, k 6= 0, we obtain T iT ∗i ∈ B0. Similarly, in (2.7) taking ak = I and
a j = 0, j 6= k, we obtain ak(T m)k = T mk ∈ B0. Since B0 is an algebra, we get
T mkT iT ∗i =V ∈ B0. �

We will show, that algebra C∗(P,T m) = Tm possesses property (*). Denote by
Lkm = PT km, L−km = T ∗kmP.

L e m m a 4 . 4 . The C∗-algebra Tm possesses property (*), that is

‖ a0 ‖≤‖ x ‖,
where a0 and x are the elements of the decomposition (4.3).

P r o o f . Let C(S1;Tm) = C(S1)⊗ Tm be the C∗-algebra of all continuous
functions on the unit circle S1 with values in the algebra Tm, with the uniform norm

‖ b ‖= sup
S1
‖ b(z) ‖, b ∈C(S1;Tm).

Every Tm-valued function b ∈C(S1;Tm) can be written in a formal Fourier
series:

b(z)'
∞

∑
k=−∞

bkzk, where bk =
1

2π

2π∫
0

b(eiθ )e−ikθ d(θ) ∈ Tm. (4.4)
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Any element b ∈ C(S1;Tm) can be approximated by the norm of the algebra
C(S1;Tm) by finite linear combination of the form (4.4).

For each monomial V of Tm an action σ0 : S1→Aut(Tm) defines a function
Ṽ ∈C(S1;Tm) as follows:

Ṽ (z) = σ0(z)(V ) = zind(V )V.

Denote by T̃m the closed subalgebra of C(S1;Tm) generated by the functions Ṽ . Then,
as in (4.4), each element ã(z)∈ T̃m ⊂C(S1;Tm) can be represented in a formal series:

ã(z)'
∞

∑
k=−∞

akzkm, where ak =
1

2π

2π∫
0

ã(eiθ )e−ikmθ d(θ) ∈ Tm. (4.5)

As in the proof of Lemma 2.1 [7], it can be shown that the Fourier coefficients ak of
(4.5) lie in the corresponding subspaces Lkm. Since ã(z) = σ(z)(a), where a ∈ Tm, it

follows that a'
in f ty

∑
k=−∞

ak, where ak ∈ Lkm. The algebras Tm and T̃m are isometrically

isomorphic [7] and, therefore, for each a ∈ Tm the following inequality holds:

‖ a0 ‖=
∣∣∣∣∣∣ 1

2π

2π∫
0

ã(eiθ )d(θ)
∣∣∣∣∣∣≤‖ ã(z) ‖=‖ a ‖

Thus, property (*) holds. �
R e m a r k 4 . 1 . Property (*) provides the uniqueness of the coefficients

ak, a−k in the decomposition (4.3) and, consequently, the uniqueness of the decom-
position (4.3).

T h e o r e m 4 . 1 . For every m ∈ N C∗-algebras Tm and P×δm Z+ are
isomorphic

Tm =C∗(P,T m)∼= P×δm Z= ϕ(A)×δm Z, (4.6)

where the isomorphism

ψ : C∗(P,T m)→ P×δm Z

is such that ψ(T m) = Û ,ψ(a) = â, for all a ∈ P, where Û and â are the canonical
images of a∈P and T m in P×δm Z, respectively, and δm,δ∗m are defined by formulas
(4.1) and (4.2).

P r o o f . The equality Tm =C∗(P,T m) is proved in Lemma 4.3. We prove in
Lemma 4.4 that the algebra C∗(P,T m) possesses the property (*). Besides, for the
pair (P,δm) due to Lemma 4.2, there exists full transfer operator δ∗m, so, using the
Theorem 3.5 from [6], we obtain

C∗(P,T m)∼= P×δm Z.

The last equality follows from Lemma 4.1. �
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C o r o l l a r y 4 . 1
(
Coburn’s theorem [8]

)
. If we take m = 1 in (4.4), we

obtain the representation of the Toeplitz algebra as a crossed product:

T =C∗(P,T )∼= P×δ1 Z= ϕ(A)×δ1 Z.
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