
PROCEEDINGS OF THE YEREVAN STATE UNIVERSITY

Physical and Mathematical Sciences 2014, № 3, p. 31–39

M a t h e m a t i c s

ON SOLUTION OF A CLASS OF HAMMERSTEIN TYPE
NONLINEAR INTEGRAL EQUATIONS ON THE POSITIVE HALF-LINE IN

THE CRITICAL CASE
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In the this article a class of nonlinear integral equations with noncompact
Hammerstein integral operator, the kernel of which depends on difference of
its arguments is investigated. Above mentioned class of equations arises in the
kinetic theory of gases and in the radiative transfer theory in nuclear reaction.

Combination of special iteration methods with the methods of the theory of
construction of invariant cone-shaped segments allow to prove existence theo-
rems of positive solutions in special selected weighted space.
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Introduction. The work is devoted to the study of the following class of
Hammerstein type nonlinear integral equations:

f (x) = µ0(x, f (x))+
∞∫

0

K(x− t)µ1(t, f (t))dt, x ∈ R+ ≡ [0,+∞), (1)

with respect to unknown real and measurable function f (x). Here the kernel K(τ),
defined on (−∞,+∞), is an even and nonnegative measurable function, satisfying the
conservative or supercritical conditions:

K(τ)≥ 0, τ ∈ R, K ∈ L1(R), α ≡
+∞∫
−∞

K(τ)dτ ≥ 1. (2)

The case α = 1 corresponds to the condition of conservativity and the case
α > 1 is the supercritical condition.
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The functions {µ j(x,u)} j=0,1 are defined on the set R+×R, take real values
and satisfy the critical condition

µ j(x,0)≡ 0, ∀x ∈ R+, j = 0,1. (3)

This condition is caused by the fact that the identically zero function is a so-
lution of (1). The main aim of the present work is the construction of a nontrivial
nonnegative (physical) solution of (1). The Eq. (1), other than purely theoretical
interest, has applications in the kinetic theory of gases (in the temperature-jump non-
linear problem). In the case when µ0 ≡ 0 and the kernel is a completely monotonic
function, the Eq. (1) has also applications in the nonlinear theory of radiative transfer
in nuclear reactors [1–3].

In the case when µ0 ≡ 0, depending on the properties of the function µ1(t,z),
in [5–8], it is discussed the global solvability of (1) in the space of essentially bounded
functions or in the space of measurable functions that possesses a linear growth at
infinity. In a recent paper of Kh.A. Khachatryan (see. [9]) the Eq. (1) is investigated

in the case α = 1,ν(K) =

+∞∫
−∞

xK(x)dx < 0, for functions {µ j(x,z)} j=0,1 with the

Caratheodory’s condition [10], monotonic in the second argument and satisfying the
following inequalities:
there exist positive numbers η > 0 and η0 ∈ (0,η) such that

µ0(x,Φη0(x))≥Φη0(x), µ0(x,η)≤Φη(x), x ∈ R+,

0≤ µ1(t,z)≤ z, t ∈ R+, z ∈ [0,η ],

where

Φδ (x)≡ δ

∞∫
x

K(u)du, x ∈ R+, δ > 0.

In this paper, using the methods of the theory of constructing invariant cone
segments for the corresponding nonlinear monotonic operator, by means of special
iterative methods and some a’priori estimates, we prove the theorem constructive
global solvability of (1) in a certain weighted space. At the end of the work spe-
cific examples of functions {µ j(x,z)} j=0,1 are listed, for which the conditions of the
theorems are fulfilled.

Construction a Positive Solution of the Eq. (1) in the Conservative Case.
The following Theorem is true

T h e o r e m 1. Suppose that there exists an integrable function λ (x) on R+

0≤ λ (x)≤ 1, x ∈ R+, λ (x) 6≡ 0,

such that:

i1) µ0(x,λ (x))≥ λ (x), x ∈ R+, 0≤ µ1(x,u)≤ u, x ∈ R+, u≥ λ (x);

i2) for each fixed x ∈ R+ the functions {µ j(x,u)} j=0,1 are monotonically increasing

with respect to u on [λ (x),+∞);
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i3) the functions {µ j(x,u)} j=0,1 satisfy the Caratheodory’s condition with respect to
the argument u on the set R+×R+, i.e. for each fixed u ∈ R+ the functions
{µ j(x,u)} j=0,1 are measurable in x and for almost all x ∈ R+ the functions are
continuous in u ∈ R+;

i4) the following inequality holds:
∞∫

0

esssup
z≥0

µ0(x,z)dx≡ c <+∞. (4)

Then, if α = 1, the Eq. (1) has a nonnegative solution f (x) from the following
weighted space:

Mγ ≡
{

ϕ(x), x ∈ R+ : ϕ(x) is measurable in R+ and
∞∫

0

γ(x)|ϕ(x)|dx <+∞

}
,

where

γ(x)≡
∞∫

x

K(u)du 6≡ 0, x≥ 0. (5)

P r o o f . Consider the following special iteration:

fn+1(x) = µ0(x, fn(x))+
∞∫

0

K(x− t)µ1(t, fn(t))dt, x ∈ R+,

f0(x) = λ (x), n = 0,1,2, . . .

(6)

Applying induction method on n, we will verify that

a) fn(x) ↑ with respect to n, (7)

b) fn ∈ L1(R+), n = 0,1,2, . . . (8)

First we will prove the assertion a).
Inequality f1(x)≥ f0(x) follows directly from the following inequalities:

f1(x)≥ µ0(x, f0(x)) = µ0(x,λ (x))≥ λ (x) = f0(x).

Suppose that fn(x)≥ fn−1(x) for some n∈N, using the monotonicity of the functions
{µ j(x,u)} j=0,1 with respect to u on [λ (x),+∞), from (6) we obtain

fn+1(x)≥ µ0(x, fn−1(x))+
∞∫

0

K(x− t)µ1(t, fn−1(t))dt = fn(x).

Now let prove the assertion b).
In the case n = 0 the inclusion b) follows directly from the conditions of the

Theorem 1. Let b) holds for some n ∈ N. Then, taking into consideration the condi-
tions i1), i2), i4), from (6) for any r > 0, we have

r∫
0

fn+1(x)dx≤
r∫

0

µ0(x, fn(x))dx+
r∫

0

∞∫
0

K(x− t) fn(t)dtdx≤
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≤
∞∫

0

µ0(x, fn(x))dx+
∞∫

0

fn(t)
r∫

0

K(x− t)dxdt ≤ c+
∞∫

0

fn(t)dt <+∞,

because of
+∞∫
−∞

K(u)du = 1 and K(x)≥ 0, x ∈ R+.

From this inequality, tending r→ ∞, we conclude that
∞∫

0

fn+1(x)dx <+∞.

Integrating both sides of (6) with respect to x from 0 to +∞, from conditions
K(−u) = K(u), u≥ 0, and i1), i2), i4) we obtain

∞∫
0

fn+1(x)dx≤ c+
∞∫

0

fn(t)
∞∫

0

K(x− t)dxdt ≤ c+
∞∫

0

fn+1(t)
∞∫
−t

K(u)dudt =

= c+
∞∫

0

fn+1(t)
t∫

−∞

K(−u)dudt = c+
∞∫

0

fn+1(t)(1− γ(t))dt,

and, therefore, we have
∞∫

0

fn+1(t)γ(t)dt ≤ c. (9)

Consequently, taking into account (7) and (9) from the theorem of B. Levi (see. [11]),
it follows that the sequence of functions

{
fn(x)

}∞

n=0
has a pointwise limit when

n→ ∞ : lim
n→∞

fn(x) = f (x) almost everywhere on R+.

We prove that the limit function f satisfies the Eq. (1). Indeed, as the sequence
of measurable functions { fn(x)}∞

n=0 are monotonically nondecreasing with respect to
n, and {µ j(x,u)} j=0;1 are also monotonic in u, then due to the nonnegativity of the
kernel K and the Caratheodory’s condition, we conclude that the functions

Fn(x, t) = K(x− t)µ1(t, fn(t)), n = 0,1, . . . ,∞,

are measurable with respect to t for each fixed x ∈ R+ and monotonically nonde-
creasing with respect to n.

On the other hand, from (2), i1) and i2) it follows that
∞∫

0

Fn(x, t)dt ≤ f (x).

Hence, according to B. Levi theorem, the sequence of functions Fn(x, t)
∞

n=0 for any
fixed x ∈R+ has pointwise limit lim

n→∞
Fn(x, t) = F(x, t) almost everywhere on R+ and

lim
n→∞

∞∫
0

Fn(x, t)dt =
∞∫

0

lim
n→∞

Fn(x, t)dt ≤ f (x).
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Since, the functions µ j(x,u) j=0,1 satisfy the Caratheodory’s conditions and
lim
n→∞

fn(x) = f (x) almost everywhere on R+, from Krasnoselskii theorem (see [12])

follows that lim
n→∞

µ j(x, fn(x)) = µ j(x, f (x)), j = 0,1, almost everywhere on R+.

Hence, the limit function satisfies the Eq. (1).
Tending n→∞ in (9) and using the fact that fn(x) ↑ with respect to n, from (7)

and (9) we obtain

f (x)≥ λ (x), x ∈ R+,

∞∫
0

f (x)γ(x)dx≤ c, (10)

i.e f ∈Mγ . �
On the Solvability of Eq. (1) in the Case, when the Kernel K Satisfies

Supercritical Conditions and is Completely Monotonic Function. In this section
we construct a positive solution of the Eq. (1) in the case when the kernel has the
following representation:

K(τ) =

b∫
a

e−|τ|sdσ(s), τ ∈ R, (11)

and satisfies the supercriticality condition

α ≡
+∞∫
−∞

K(τ)dτ = 2
b∫

a

1
s

dσ(s)> 1, (12)

where σ(s) is a nondecreasing and continuous function on [a, b) and
0 < a < b≤+∞.

In the case when µ0 ≡ 0 and the kernel allow the representation (11)
the Eq. (1) arises in nonlinear transfer theory of nuclear reactors.

We introduce the following function:
Kε(x) = K(x)eεx, ε ∈ [0,a), x ∈ R. (13)

From the representation (11) of the kernel K it immediately follows that

Kε(x) =



b∫
a

e−x(s−ε)dσ(s), x≥ 0,

b∫
a

ex(s+ε)dσ(s), x < 0,

∈ L1(−∞,+∞), (14)

due to ε ∈ [0,a) and s≥ a.
Consider the function:

ρ(ε)≡
0∫

−∞

Kε(τ)dτ =

b∫
a

1
s+ ε

dσ(s), ε ∈ [0,a). (15)

We note that

ρ ∈C[0,a), ρ(0) =
α

2
>

1
2
, ρ(ε) ↓ with respect to ε on [0,a). (16)

Hence, by Cauchy’s theorem there exists a number ε0 ∈ (0,a), such that ρ(ε0)≥
1
2
.

We fix a number ε0. The following theorem is valid:
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T h e o r e m 2. Let the functions {µ j(t,u)} j=0,1 satisfy the following
conditions:

j1) for any fixed t ∈ R+ the functions {µ j(t,u)} j=0,1 are monotonically increasing
with respect to u on [e−at ,+∞);

j2) the following inequalities are true:

µ0(t,u)≥ 0, t ∈ R+, u≥ e−at , c≡
∞∫

0

esssup
u≥0

µ0(t,u)dt <+∞,

µ1(t,e−ε0t)≥ 2e−ε0t , µ1(t,u)≤
u
α
+βε0(t), t ∈ R+, u≥ e−at ,

for some integrable functions βε0(t) on R+ : βε0(t)≥ 2e−ε0t , t ∈ R+;

j3) the functions {µ j(t,u)} j=0,1 satisfy the Caratheodory’s condition with respect to
the argument u on R+×R+.

Then, if α > 1, the Eq. (1) has a positive solution in the space Mγ .
P r o o f . Consider the following iteration:

fn+1(x) = µ0(x, fn(x))+
∞∫

0

K(x− t)µ1(t, fn(t))dt, x≥ 0,

f0(x) = e−ε0x, n = 0,1,2, ...

(17)

Applying the induction method on n, first make sure that

fn(x) ↑ with respect to n. (18)

Indeed, in view of conditions j2) and j1) from (17) we obtain for x≥ 0

f1(x)≥
∞∫

0

K(x− t)µ1(t, f0(t))dt =
∞∫

0

Kε0(x− t)e−ε0(x−t)
µ1(t,e−ε0t)dt ≥

≥ 2
∞∫

0

Kε0(x− t)e−ε0(x−t)e−ε0tdt = 2e−ε0x
x∫

−∞

Kε0(u)du≥

≥ 2e−ε0x
ρ(ε0)≥ e−ε0x = f0(x),

because of ρ(ε0)≥
1
2
.

Assuming that fn(x)≥ fn−1(x) for some n∈N from the condition j1) it follows
that

fn+1(x)≥ µ0(x, fn−1(x))+
∞∫

0

K(x− t)µ1(t, fn−1(t))dt = fn(x).

Thus the monotonicity of the sequence
{

fn(x)
}∞

n=0
with respect to n is proved. Simi-

larly, as in the proof of Theorem 1, by the induction in n we can see that fn ∈ L1(R+).
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Integrating both sides of (17) with respect to x from 0 to +∞, using the inequalities
j2) and the monotonicity condition, we obtain the following chain of inequalities:

∞∫
0

fn+1(x)dx≤ c+
∞∫

0

∞∫
0

K(x− t)µ1(t, fn(t))dtdx≤

≤ c+
∞∫

0

∞∫
0

K(x− t)µ1(t, fn+1(t))dtdx≤

≤ c+
∞∫

0

∞∫
0

K(x− t)
(

fn+1(t)
α

+βε0(t)
)

dtdx≤

≤ c+
1
α

∞∫
0

fn+1(t)
∞∫
−t

K(u)dudt +α

∞∫
0

βε0(t)dt =

= c+α

∞∫
0

βε0(t)dt +
1
α

∞∫
0

fn+1(t)
t∫

−∞

K(u)dudt =

= c+α

∞∫
0

βε0(t)dt +
1
α

∞∫
0

fn+1(t)(α− γ(t))dt.

From this inequality it immediately follows that
∞∫

0

fn+1(t)γ(t)dt ≤ cα +α
2

∞∫
0

βε0(t)dt <+∞. (19)

Thus given (18) and (19) conclude that the sequence of functions { fn(x)}∞
n=0 has a

limit when n→∞ : lim
n→∞

fn(x) = f (x), and the limit function f (x) satisfies the Eq. (1)
and the following inequalities:

f (x)≥ e−ε0x,
∞∫
0

f (x)γ(x)dx≤ cα +α2
∞∫
0

βε0(t)dt, x ∈ R+. �

At the end we give some examples of functions {µ j(t,u)} j=0,1, for which the
conditions of the formulated theorems are fullfiled.

Examples of Functions {µ j(t,u)} j=0,1 for Theorem 2.

c) µ0(t,u) = (1− e−u)e−t2
, u≥ 0, t ∈ R+;

d) µ1(t,u) = ξ
√

e−ε0tu, u ≥ e−ε0t , ξ ≥ max

{
2,

√
8
α

}
arbitrary number,

βε0(t)≥
ξ 2α

4
e−ε0t , t ∈ R+, βε0 ∈ L1(R+).
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Performance of the corresponding conditions of Theorems 1 and 2 for above
mentioned examples a),b),c) can be easily verified. Let us consider the example d).

First note that µ1(t,u) ↑ with respect to u for each fixed t ∈ R+. It is obvious
that

µ1(t,u)≥ ξ

√
e−2ε0t = ξ e−ε0t ≥ 2e−ε0t , because of ξ ≥ 2.

The function µ1(t,u) = ξ
√

e−ε0tu is jointly continuous in its arguments on set
R+×R+, hence, it satisfies the Caratheodory’s condition.

Below we prove that there exists an integrable function βε0(t) on R+ :

βε0(t)≥
ξ 2α

4
e−ε0t , t ∈ R+, such that

ξ
√

e−ε0tu≤ u
α
+βε0(t), t ∈ R+, u≥ 0. (20)

Indeed, this inequality is equivalent to the following inequality:

u2 +[2αβε0(t)−ξ
2
α

2e−ε0t ]u+α
2
β

2
ε0
(t)≥ 0, t ∈ R+, u≥ 0. (21)

It is obvious that the inequality (21) takes place, if

[2αβε0(t)−ξ
2
α

2e−ε0t ]2−4α
2
β

2
ε0
(t)≤ 0,

which is equivalent to the following inequality:

βε0(t)≥
ξ 2α

4
e−ε0t , t ∈ R+.
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