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Introduction. We consider undirected simple finite graphs. The sets of
vertices and edges of a graph G are denoted by V (G) and E(G) respectively. For
a graph G we denote by δ (G) the least degree of a vertex of G. For any graph G
we define a parameter c(G) in the following way: if G is empty, then c(G) ≡ 0,
otherwise, c(G) is equal to the number of connected components of G. If G is a
graph, x ∈ V (G), y ∈ V (G), then dG(x,y) denotes the distance between the vertices
x and y in G. If G is a graph, x ∈ V (G) and V0 ⊆ V (G), then dG(x,V0) denotes the
distance in the graph G between its vertex x and the subset V0 of its vertices. For a
graph G and an arbitrary subset V0 ⊆ V (G) G[V0] denotes the subgraph of the graph
G induced by the subset V0 of its vertices.

For any graph G and its arbitrary subgraph H let us define the subgraph
S[H,G] of the graph G as follows:

V (S[H,G])≡ {x ∈V (G)/ dG(x,V (H))≤ 1},
E(S[H,G])≡ E(H)∪{(x,y) ∈ E(G)/ x ∈V (S[H,G])\V (H),y ∈V (H)}.
An arbitrary nonempty finite subset of consecutive integers is called an

interval. A bijection ϕ : E(G)→ {1,2, . . . , |E(G)|} is called an edge labeling of the
graph G. For a graph G the set of all its edge labelings is denoted by τ(G).
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If G is a graph, x ∈V (G), ϕ ∈ τ(G), then the set

SG(x,ϕ)≡ {ϕ(e)/e ∈ E(G), e is incident with x}
is called a spectrum of the vertex x of the graph G for its edge labeling ϕ . If G is a
graph, ϕ ∈ τ(G), then Vint(G,ϕ)≡ {x ∈V (G)/ SG(x,ϕ) is an interval}.

The terms and concepts, which are not defined can be found in [1].
An upper bound for the cardinality of the set Vint(G,ϕ) is obtained in the case

when G is a regular graph with δ (G)≥ 2 and ϕ ∈ τ(G).
The Main Results. First we recall the following
P r o p o s i t i o n [2]. Let G be a graph with δ (G) ≥ 2. Let ϕ ∈ τ(G) and

Vint(G,ϕ) 6= /0. Then G[Vint(G,ϕ)] is a forest, each connected component of which is
a simple path.

T h e o r e m . If G is a r-regular graph, r ≥ 2, ϕ ∈ τ(G), then

|Vint(G,ϕ)| ≤
⌊

r|V (G)|−2c(G[Vint(G,ϕ)])

2(r−1)

⌋
.

Proof. Let c(G[Vint(G,ϕ)]) = k.
Case 1. Vint(G,ϕ) = /0.
In this case the required inequality is the following evident one:

0≤
⌊

r|V (G)|
2(r−1)

⌋
.

Case 2. Vint(G,ϕ) 6= /0.
In this case k≥ 1. Since δ (G) = r≥ 2, by Proposition, G[Vint(G,ϕ)] is a forest

with k connected components and each of these components is a simple path.
Let P1, . . . ,Pk be all the connected components of the forest G[Vint(G,ϕ)].
It is not difficult to see that for ∀i, 1≤ i≤ k, the equality

|E(S[Pi,G])|= (r−1)V (Pi)|+1

holds.
Let us also note that (if k ≥ 2) for arbitrary integers i ′ and i ′′ satisfying the

inequality 1≤ i ′ < i ′′ ≤ k, the relation E(S[Pi ′ ,G])∩E(S[Pi ′′ ,G]) = /0 holds.
Taking into account the evident relation (

⋃k
i=1 E(S[Pi,G]))⊆ E(G), we obtain

|E(G)|= r|V (G)|
2

≥
∣∣∣∣ k⋃

i=1

E(S[Pi,G])

∣∣∣∣= k

∑
i=1
|E(S[Pi,G])|=

=
k

∑
i=1

((r−1)|V (Pi)|+1) = k+(r−1)
k

∑
i=1
|V (Pi)|= k+(r−1)|Vint(G,ϕ)|,

|Vint(G,ϕ)| ≤ 1
r−1

(
r|V (G)|

2
− k
)
=

r|V (G)|−2k
2(r−1)

.

Consequently,

|Vint(G,ϕ)| ≤
⌊

r|V (G)|−2k
2(r−1)

⌋
. �
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C o r o l l a r y 1. If G is a r-regular graph, r ≥ 2, ϕ ∈ τ(G), then

|Vint(G,ϕ)| ≤
⌊

r|V (G)|−2
2(r−1)

⌋
.

C o r o l l a r y 2. If G is a cubic graph, ϕ ∈ τ(G), then

|Vint(G,ϕ)| ≤
⌊

3|V (G)|−2c(G[Vint(G,ϕ)])

4

⌋
.

C o r o l l a r y 3. If G is a cubic graph, ϕ ∈ τ(G), then

|Vint(G,ϕ)| ≤
⌊

3|V (G)|−2
4

⌋
.
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