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The problem of forced convection in a cell of plane-parallel layer of nematic 
liquid crystal, both the boundaries of which are free and isothermal, has been 
discussed. However much artificial seem the boundary conditions first proposed 
by Rayleigh, these permit an obtaining of simple exact solution of the boundary 
value problem, by means of which some most important features of the problem 
are elucidated. In particular it proved possible to excite convective motions in the 
absence of reorientation of the liquid crystal director. 
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Introduction. Last two decades the problem of convection in the layer of 

liquid heated from beneath [1–3] attracted an intent attention connected with the 
use of high power lasers for materials processing (the laser technology [4, 5]). The 
observed effects are widely known as the convective Rayleigh–Benar and 
Marangony [6–13] motions. The role played by convection in technological 
processes connected with melting, welding, cutting and doping of metals is 
essential. Due to convection, as a result of laser alloying, rapid mixing of dopant 
material with support medium occurs. The same effect can be used to explain 
cathode spot’s motions [14], as well as form variety of some material’s arc-welded 
joints [15]. The investigation of stability of thermal convection in nematic liquid 
crystals (NLC) is of great interest because of their unique properties. So, the 
instability thresholds in NLC notably differ from that for isotropic liquids having 
the same physical parameters [16–19]. In contrast to the isotropic liquid, in the 
instability mechanism of NLC the behavior of director, i.e., the unit vector in the 
direction of preferred orientation of molecules, is predominant. An important 
implication of this fact is that the stationary convection is observed in the 
homeotropically aligned (the molecules are oriented perpendicular to the substrates 
of the cell) NLC specimen in case of its downright heating [20–22]. As was shown 
recently [23], this kind of layer is always stable both in the case of rigid boundaries 
and with one free surface. And the dynamics of NLC droplet spreading has been 
studied in the frameworks of long-wave approximation [24].  
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Based on systematic experimental investigations by Benard [6, 7], Rayleigh 
solved [8] the stability problem of layer equilibrium subject to free boundary 
conditions and ipso facto laid the foundations of the theory of convective stability. 
Since then the horizontal layer of liquid now as heretofore is the central object of 
convective stability research mainly due to the fact that this geometry is readily 
realizable in experiments and is convenient for thermal and optical measurements. 
A plane horizontal layer is also of great interest in connection with applications of 
the theory of convective stability in the metrology, geophysics and astrophysics.  

In the present work we deal with the problem of excitation of convective 
motions in NLC with two free plane isothermal surfaces, that is the forced 
analogue of the so-called Rayleigh problem. Since this problem can be solved 
analytically and exactly, it is possible to revel some new qualitatively effects as, 
e.g., to induce convective motions under certain conditions without the variation of 
NLC orientation. 

The Linearized Equations and Boundary Conditions. Let consider a 
horizontal layer (0 )z L   of a homeotropically (non-perturbed director 0 zn e ) 
or planar 0( )xn e  oriented NLC with free surfaces, under gravity zg g e , that 
is absorbing the incident light. The temperature 0T  on the boundaries of layer is 
fixed and there is now temperature gradient in a non-perturbated state. Let two  
coherent flat light beams (e.g. laser beams) be incident on the layer and create a 
space periodical pattern of intensity distribution propotional to 2| |E . In the presence 
of weak optical absorption a periodical heat emission in the bulk of the form 

2 2 2 * ( )
1 2 1 2( ) ( ) . .

8 8
ikxL cn L cnQ x E x E E E E e c c 

 
       ,          (1) 

where 1 22 | sin sin |k       is the wave vector of the inhomogeneous part of  
heat production; 1  and 2  are the incidence angles of light wave;   is the 
wavelength of light wave in vacuum;   is the light absorption coefficient 
( 1);L    c  is the speed of light in vacuum and n  is the average refractive index 
of the NLC. 

The bulk heat source of the system is assumed to be homogeneous relative to 
the y coordinate, so, that / 0y    everywhere and 0yv  . Here v  is velocity of 
hydrodynamic motions. Let denote the angle between the nematic director and 
the z -axis as i  . Here i  is the angle of director in the non-perturbed state  
( 0i   for initial homeotropic orientation and / 2i   for a planar orientation of 
nematic), and   is the director perturbation 0 0.z    

In the absence of light field the equilibrium state of NLC corresponds to 
solutions of the form 

0 0 0

0 0 0

0, const, const,
0, ( 0) .

v T T
p p z gz

 
 

    

   
                          (1*) 

Here p is the hydrodynamic pressure and  is the density of NLC. At illumination 
of liquid layer the system is perturbed, and the stationary, linearized equations for 
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perturbed values of 0 0,          where   is the coefficient of volume 
expansion), 0 , ,x zp p p v v    and   are introduced in the following form [25] 

2 2

2 ,x x
x x x a

v vp v
t x x z t

    
  

     
    

                               (2) 

 
2 2

02 ,z z
z z z b

v vp v g
t z z x t

        
      

    
            (3) 

,0







z
v

x
v zx  

2 2

2 2
0

,x z
p

Qr r
t x z c L
  


  

  
  

                            (4) 

2 2

2 2( ) .x z
a b x z a b

v vK K
t x z z x
     

   
    

    
                      (5) 

The following notation have been made above: for a cell with planar initial 
orientation, 2 1 1 5 5 || 3, , , , , , ,z x x z x z xr r r r K K                   

1 3 2, , ;z a bK K        and for a cell with homeotropically oriented nematic, 
1 2 5 1 5 || 1 3, , , , , , , ,z x x z x z x zr r r r K K K K                     

2 ,a   3.b   Here 1K  and 3K  are the coefficients of Frank elasticity, ||r  and 
r are the parallel and perpendicular components of the thermal conductivity; 

1 3 4 60.5( )       and 2 2 4 50.5( )        are the viscosity coefficients  
of NLC. i  are the Leslie coefficients; 0  is the non-perturbated density; b is the 
Biot heat removal coefficient. 

Now let formulate the boundary conditions. Assuming after Rayleigh [8] that 
the layer has free surfaces, then the tangential stresses at the boundaries disappear. 
Then, these boundaries are supposed to be plane. That is the arising convective 
disturbances are assumed not to bring to warping of boundaries. As it was 
previously mentioned, the temperatures on boundaries are fixed. As the 
temperature at the boundaries was indicated above to be fixed, no temperature 
perturbations on layer surfaces shall occur. As the director is supposed to be made 
fast, its deviations at boundaries also vanish. Thus, we have a set of boundary 
conditions 

  ( , 0) ( , ) 0, ( , 0) ( , ) 0,z zx z x z L v x z v x z L                  (6)     

( , 0) ( , ) 0, ( , 0) ( , ) 0.x xv vx z x z L x z x z L
z z

 
 

       
 

        (7) 

To replace the boundary conditions for vx that are obtained subject to the 
requirement of absence of tangential stresses at these boundaries, by those for vz, 
we take advantage of the continuity equation. After differentiation of the first 
equation of set (4) with respect to z under the boundary condition for velocity, we 
obtain 2 2/ 0zv z    in case of 0, .z L  

Analytical Solution of the Forced Convection Equations. Since 
coefficients in Eqs. (2)–(5) and boundary conditions (6), (7) are independent of 
time and horizontal coordinate x, there exist solutions that are exponential in time 
and periodic in (x, z) plane. 



Hakobyan  M. R. Forced Convection in Nematics Liquid Crystals in the Absence of Reorientation. 
  

59 

The  spatially periodic  term  *( ) ( )
j

ikx
i ijE x E x a e  in  *

jiE E   tensor charac-

terizing the distribution of light wave intensity, causes the following stationary 
perturbations  

( , ) sin ,ikx
z z

zv x z V e
L


      ( , ) sin ,ikx zθ x z e
L


                       (8)     

( , ) cos ,ikx
x x

zv x z V e
L


       ( , ) sin ,ikx zφ x z e
L


                      (9) 

satisfying the boundary conditions on free boundaries  z = 0, L. For amplitudes of 
these perturbations, we obtain  

4 2 2 4 1 1
0 0 0 0[ ( ) ] , ,x x x z x z z z xV ikk g k k k k V ik kV                       (10) 

2 2 1 * 1 2 2 2 2 1
0 1 2 0 0 0( ) , ( )( )

8 x z x a b z x
p

cn r k r k E E V k k k K k K k
c


 


           (11) 

here 0 .k L  It is seen from second expression of Eq. (11) that when 

0 a bk k α α   the viscous moments acting on director compensate each other and, 
as a result, the reorientation is suppressed although the convection is continued.    
If we denote 2k   , where is the period of interference pattern, then the 
condition of the absence of reorientation will take on the form 

.
2cr a bL α α

                                              (12) 

Based on the example of NLC MBBA, we obtain for the initial homeotropic 

orientation 4.08
2cr a bL α α

    and for the initial planar orientation 

3 2 0.06
2crL α α

   . Note, that this effect is feasible only in case of forced 

convection, because only the laser excitation gives an opportunity of ensuring 
convection with the desired period. 

When  1/ 2
0 /a bk k    the response of system decreases with linear 

reduction of k  according to 5
0( )L kk   law. The deviation builds up with k 

increasing from zero and reaches its first maximum for 00.05k k  (for planar 

MBBA).   changes its sign in  1/ 2
0 0/ 0.1a bk k k    point (for planar MBBA), 

i.e.,   changes its phase by  , and at 00.6k k  its amplitude reaches the second 
maximum. The latter corresponds to the period of regular Benard instability pattern 
in case of constant vertical temperature gradient. For 00.6k k the reorientation 
sharply reduces increasing  k  according to 5

0( )L k k   law. 
Conclusion. Thus, in the present work the Rayleigh problem of excitability 

of regular convective motions in liquid crystals with two free boundaries exposed 
to radiation with space periodical intensity distribution has been solved. The laser 
induced hydrodynamic effects are of interest due to the fact that they permit an 
induction of regular roller structures, roller structures with dislocations, annular 
roller structures, as well as some assemblies of cells with hexagonal, cubic and 
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other structures, both the perfect ones and containing various dislocations. It is 
achieved by interference of a plane light wave with another wave having             
the front dislocation, as well as the interference of two waves with complicated 
wave fronts. A ring-type roller structure results at an interference of a plane      
wave with the one having a conical front. The cells with hexagonal, cubical and 
other structures are produced at the interference of three, four and greater number 
of waves, the defects being purposefully introduced in these structures. There are 
reasons to expect that at slight excess over the threshold the light interference 
pattern may “impose” its own period and phase upon the steady-state pattern of 
rollers or cells.     

Besides, there is an opportunity for smooth control of the parameters of 
forced convection pattern. In our opinion, the possibility of controlling the spatial 
structures is of high interest not only for LC, but also for any unstable systems  
with finite wave vector 1 5 11 10cm k cm    of the grating in the transverse plane. 
As follows from the foregoing analysis, the laser radiation is a convenient 
instrument for studying the convective motions.  

As was also shown in the present paper in the case of large and small values 
of the intensity of light and the ratios of the period of interference pattern to        
the cell thickness, the two-dimensional roller structure proves unstable with 
gradual transition to a chaotic state. As the amplification of white noise in 
convenient experiments on turbulence masks the qualitative difference of turbulent 
flows in various regions of extrinsic parameters, the controllable excitation          
are of special importance. We are show that the experiment described in              
the present paper may serve as a model for treatment of the turbulence problem    
in the above sense.  
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