PROCEEDINGS OF THE YEREVAN STATE UNIVERSITY

Physical and Mathematical Sciences

2015, № 1, p. 12-14

Mathematics

INNER AUTOMORPHISMS OF NON-COMMUTATIVE ANALOGUES OF THE ADDITIVE GROUP OF RATIONAL NUMBERS

A. Ye. GRIGORYAN *

Department of Applied Mathematics RAU, Armenia

It is proved that the inner automorphisms group of the group A(m,n) are characteristic subgroup in Aut(A(m,n)) for all m > 1 and odd $n \ge 1003$, where the groups A(m,n) are known non-commutative analogues of the additive group of rational numbers.

MSC2010: 20F28, 20E36.

Keywords: automorphisms group, inner automorphism, characteristic subgroup.

Introduction. The inner automorphism of an element g of a group G is denoted by i_g and is given by the formula $x^{i_g} = gxg^{-1}$ for all $x \in G$. The mapping $\pi : G \to Aut(G)$, taking each $g \in G$ to the inner automorphism i_g , is a homomorphism, $Ker(\pi) = Z(G)$ and $Im(\pi) = Inn(G)$. It is easy to check that the automorphism group Aut(G) of a group G with trivial center also is a group with trivial center. Therefore, in this case, we obtain a sequence of embeddings

$$G \to Aut(G) \to Aut(Aut(G)) = Aut^2(G) \to Aut^3(G) \to \dots$$
(1)

This sequence is called the automorphism tower of group G. For a group with a complete automorphism group the length of the automorphism tower is 1. Recall, that a group is called *complete* if its center is trivial and each of its automorphism is inner. Examples of such groups are automorphism groups of absolutely free groups (see [1]), the automorphism groups of non-abelian free solvable group of finite rank [2], as well as automorphism groups of the free Burnside groups B(m,n) of odd periods $n \ge 1003$ (see [3,4]). According to the criterion of Burnside (see [5]), the group Aut(G) of a group G with trivial center is complete, if and only if Inn(G) is a characteristic subgroup of Aut(G).

Consider the group

$$A(m,n) = \langle a_1, a_2, \dots a_m, d \mid a_j d = da_j \ A^n = d \text{ for all } A^n \in \bigcup_{i=1}^{\infty} \mathscr{E}_i \ 1 \le j \le m \rangle,$$
 (2)

^{*} E-mail: ag89.08@mail.ru

where $n \ge 1003$ an arbitrary odd number, m > 1. These groups are constructed and studied in works [6,7]. Obviously, the center of A(m,n) isn't trivial. We will investigate the automorphism group of A(m,n). As in [7] is proved, groups A(m,n) are torsion-free, and any two non-trivial cyclic subgroups of A(m,n) have a nontrivial intersection. The same holds for the additive group of rational numbers. The existence of a non-commutative group with mentioned property (Kontorovich problem), was proved in [6], after being an open question for a long time. Group A(m,n) is also called non-commutative analogue of the group of rational numbers. Our main result is the following theorem.

Theorem. The inner automorphisms group of the groups A(m,n) are characteristic subgroup in the group Aut(A(m,n)) of all automorphisms of A(m,n) for all m > 1 and odd $n \ge 1003$.

The Proof of Main Result. Since the center of each group is a characteristic subgroup, then every automorphism α of group A(m,n) induces an automorphism $\overline{\alpha}$ of group B(m,n) in a natural way.

Lemma 1. The Homomorphism $f : Aut(A(m,n)) \to Aut(B(m,n))$ given by the formula $f(\alpha) = \overline{\alpha}$ is not surjective.

P roof. It is easy to check that the automorphism of group B(m,n), which takes each free generator a_i to a_i^2 , has no pre-image under the homomorphism f. \Box

Let Φ be an automorphism of Aut(A(m,n)) and $\Phi(Inn(A(m,n))) = H$. We are going to prove that H = Inn(A(m,n)).

Lemma 2. $Inn(A(m,n)) \cap H \neq \{1\}.$

P r o o f. Suppose that an automorphism α from $\Phi(Inn(A(m,n)))$ is commutating with each inner automorphism $i_a, a \in G$. It means that for every element $x \in G$ the equality $a^{-1}a^{\alpha}x^{\alpha}(a^{-1})^{\alpha}a = x^{\alpha}$ holds for all $a \in A(m,n)$. It turns out that element $a^{-1}a^{\alpha}$ belongs to the center of A(m,n) for all $a \in A(m,n)$. Hence, we get $a^{\alpha} = az$ for some $z \in Z(A(m,n))$. But $\alpha^n = id$, therefor, $a = a^{\alpha^n} = azz^{\alpha}z^{\alpha^2}\cdots z^{\alpha^{n-1}}$ and, hence, we obtain $zz^{\alpha}z^{\alpha^2}\cdots z^{\alpha^{n-1}} = 1$. The center Z(A(m,n)) of A(m,n) is an infinite cyclic group generated by element d. Then $d^{\alpha} = d$ or $d^{\alpha} = d^{-1}$, because the center is characteristic subgroup. If $d^{\alpha} = d$, then $z^{\alpha} = z$ and $zz^{\alpha}z^{\alpha^2}\cdots z^{\alpha^{n-1}} = z^n = 1$. This contradicts the condition that A(m,n) is torsion-free. If $d^{\alpha} = d^{-1}$, then $z^{\alpha} = z^{-1}$ and we get $zz^{\alpha}z^{\alpha^2}\cdots z^{\alpha^{n-1}} = z = 1$ because n is odd.

Thus, by Lemma 2, some elements of the normal subgroup H are inner automorphisms. We have $Inn(A(m,n)) \simeq B(m,n) \simeq Inn(B(m,n))$, because the groups B(m,n) and A(m,n)/Z(A(m,n)) are isomorphic, see Eq. (2). Besides, if the subgroups Inn(A(m,n)) and $H \simeq B(m,n)$ are different, then none of them can be contained in the other as a subgroup by Corollary 1 [8]. Consider the set $P = \{a \in A(m,n) | i_a \in H\}$.

Lemma 3. (1) P is a normal subgroup in A(m,n).

(2) The subgroup *P* is *φ*-invariant for each automorphism *φ* ∈ *H*, that is *P^φ* = *P*.
(3) The equality *a^{φⁿ⁻¹} · · · a^{φ²} · a^φ · a* = 1 holds for any automorphism *φ* ∈ *H* and any element *a* ∈ *P*.

(4) The inclusion $a^{-1}a^{\phi} \in P$ holds for any element $a \in B(m,n)$ and for each

automorphism $\phi \in H$.

P roof. (1) From $i_a \in H$ it follows that $i_x \circ i_a \circ i_x^{-1} = i_{xax^{-1}} \in H$ for all $x \in B(m,n)$, because *H* is a normal subgroup of AutB(m,n). Thus, the condition $a \in P$ implies that $xax^{-1} \in P$ for all $x \in B(m,n)$. This means that the subgroup *P* is normal in B(m,n).

(2) From the normality of subgroup *H* it also follows that $\phi \circ i_a \circ \phi^{-1} = i_{a^{\phi}} \in H$ for arbitrary ϕ , $i_a \in H$. Hence, the inclusion $a \in P$ implies $a^{\phi} \in P$ for all $\phi \in H$. For the same reason we have $a^{\phi^{-1}} \in P$. Therefore, the equality $P^{\phi} = P$ holds for any $\phi \in H$, that is, the subgroup *P* is ϕ -invariant.

(3) By definition, we have $i_a \in H$ for all $a \in P$, and so the equality $(\phi^{-1} \circ i_a)^n = 1$ holds for all $\phi, i_a \in H$ because *H* is a group of exponent *n*. On the other hand,

$$(\phi^{-1} \circ i_a)^n = \phi^{-n} \circ i_{a^{\phi^{n-1}} \cdots a^{\phi^2} \cdot a^{\phi} \cdot a}.$$

Taking into account that $\phi^{-n} = 1$ we obtain the equality $i_{a^{\phi^{n-1}} \cdots a^{\phi^2} \cdot a^{\phi} \cdot a} = 1$. This is equivalent to the equality $a^{\phi^{n-1}} \cdots a^{\phi^2} \cdot a^{\phi} \cdot a = 1$ by virtue of triviality of the center of the group B(m,n).

(4) The commutator $[i_a, \phi^{-1}]$ belongs in the intersection $Inn(B(m,n)) \cap H$ for all $a \in B(m,n)$ and $\phi \in H$, because both subgroups Inn(B(m,n)) and H are normal. On the other hand we have the identities

$$[i_a, \phi^{-1}] = i_{a^{-1}} \circ \phi \circ i_a \circ \phi^{-1} = i_{a^{-1}a^{\phi}}$$

Thus, we get $i_{a^{-1}a^{\phi}} \in H$, which means that $a^{-1}a^{\phi} \in P$.

Further, using Lemma 3 and repeating the arguments of Section 4 [3], we get that $H \cap Inn(A(m,n)) = Inn(A(m,n))$.

Received 06.02.2015

REFERENCES

- 1. Dyer J., Formanek E. The Automorphism Group of a Free Group is Complete. // J. London Math. Soc., 1975, v. 11, № 2, p. 181–190.
- 2. Dyer J., Formanek E. Characteristic Subgroups and Complete Automorphism Groups. // Amer. J. Math., 1977, v. 99, № 4, p. 713–753.
- Atabekyan V.S. The Groups of Automorphisms are Complete for Free Burnside Groups of Odd Exponents n ≥ 1003. // International Journal of Algebra and Computation, 2013, v. 23, № 6, p. 1485–1496.
- 4. Atabekyan V.S. The Automorphism Tower Problem for Free Periodic Groups. // Proceedings of the YSU. Physical and Mathematical Sciences, 2013, № 2, p. 3–7.
- Robinson D.J.S. A Course in the Theory of Groups (Second edition). Graduate Texts in Mathematics. New York: Springer-Verlag, 1996, v. 80.
- Adian S.I. On Some Torsion-Free Groups. // Mathematics of the USSR-Izvestiya, 1971, v. 5, № 3, p. 475–484.
- 7. Adian S.I. The Burnside Problem and Identities in Groups. Ergebnisse der Mathematik und ihrer Grenzgebiete. Berlin-New York: Springer-Verlag, 1979, 336 p.
- Atabekyan V.S. The Normalizers of Free Subgroups of Free Burnside Groups of Odd Period n ≥ 1003. // Journal of Mathematical Sciences, 2010, v. 166, № 6, p. 691–703.