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We prove, that if P(D) = P(D;,D;) = ZYQD?IDSQ is an almost

o
hypoelliptic regular operator, then for enough small § > 0 all the solutions of
the equation P(D)u = 0 from L, 5(R?) are entire analytical functions.
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Definitions and Statement of the Problem. We use standard notations:
N is the set of natural numbers; No = NU{0}; N} = Ny X --- X Ny is the set of
n-dimensional multi-indices; E” and R" are n-dimensional real coordinate spaces

x=(x1,...,x,) and & = (&,...,&,) respectively.

Let £ € R", x € E" and @ € N*. We put || = (/E+---+E2,
d

| =1+ +ay, E*=EM ... E% and D* =D ... DO, whereDj:a—a
J

orD; = 1(9(1]"].: l,...,n. Denote R, ={& € R";§;>0,j=1,...,n}.

Let B = {a} be finite set of points from N{§. Any minimal convex polyhedron
R = R(B) C R, including BU {0} is called characteristic polyhedron or Newton
polyhedron of the set B. Say a polyhedron R is regular, if R has vertex at the
origin, vertices on each axes apart from the origin, and all outer (relative to R)
normals of (n — 1)-dimensional faces of R have nonnegative coordinates. We say
a polyhedron R is completely regular, if all outer normals of such faces have only
positive coordinates.

Let P(D) = Z}/aD“ be linear differential operator with constant coefficients
(04

and P(§) = Zya§“ be the corresponding symbol (characteristic polynomial),
o
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where summation is performed over the following finite set of multi-indices
(P) = {& € Ng, Yo # O}.

The characteristic polyhedron R = R(P) of a set (P) is said to be the charac-
teristic polyhedron of the operator P(D) (polynomial P(£)).

Definition 1. [1.2]. An operator P(D) with a polyhedron R = R(P) is
called regular, if there exists a constant C > 0 such that

Y, [EY=c(PE)+1), vEeR".
aERNNG

Definition 2. [3]. Anoperator P(D) (polynomial P(&)) is called almost

hypoelliptic, if there exists a constant C > 0 such that for any f € N

IDP(E)I < C(IP(E)| +1), VE € R".

Any hypoelliptic operator is almost hypoelliptic [4]. The reverse assertion is
not true. In [5] an example of a polynomial with a Newton regular polyhedron is
shown, which is almost hypoelliptic but not hypoelliptic.

L. Hormander solved the problem of infinitely differentiability of solutions of
homogenous hypoelliptic equations [4]]. He indicated also those classes of Jevrey,
containing the solutions of the homogenous equation P(D)u = 0. Similar results
for some class of non hypoelliptic operators were obtained by V. Burenkov [6].
In [[7] multi-anisotropic classes of Jevrey were defined and proved that solutions of a
homogenous hypoelliptic equation P(D)u = 0 with constant coefficients belong to
such classes generated by operator P(D).

For 8 > 0 we put N(P,8) = {u;u € L, 5(E*),P(D)u =0}, where

Ly 5(E?) = {f:fe M € Lo(E?)}.
Let us define also the following weighted Sobolev spaces
Wy's(E?) = {u; |[D%ule™®M € Ly(E?); Vo € NG, |a] < m},

where m € No. W,'s(E?) = {u;|D%ule=®" € Ly (E?);Var € RNNG}.
If operator P(D) is almost hypoelliptic [S], then there exists 8y > 0 such that
for each & € (0, )

N(P.8) C NipgWy's (E?).

Let Py(D) = Ry(D1,D2) = ). YaD{'DY* is a regular operator with the
aEN?
characteristic polyhedron

R(Py) = {vER:,vi <my,vy <my},

where m,m; € Ny. Obviously, R(FP) is a regular polyhedron.

It was proved in [3]] that arbitrary regular operator with a Newton regular
polyhedron is almost hypoelliptic.

We denote by Ag(E?) the set of entire analytical functions of real variables
(X 1 ,XZ) .

Our goal is to show that for a sufficient small § > 0 we have N(Py,8) C Ag(E?).
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Preliminaries. We need to change the function e ~°* by an equivalent smooth
function for the proof of the main results. Paper [§]] proves existence of weighted
function g5(x) = g(8x), 6 > 0, satisfying the following conditions.

1) There exists a constant ¢ > 0 such that

cle8h < gs(x) < ce SK x e EZ

2) for any @ € Ng there exists a constant ¢, > 0 such that
ID%g5(x)| < ca6!¥gs(x), x € E%;

3)letT >0, 87 = {x;x € E2,|x| <T} and 61 = 61(5,T) = c?e®”, where c is
the constant from 1). Then,

sup g5(x+y) < o185(x), x € E*;
YEST

4)let T >0and 0, = 02(08,T) = ﬂczmax{ca; o = 1}6Te5T. Then,

sup g5 (x+) —g5(x)| < Gags(x), x € E?,
YedT
where ¢ > 0 is the constant from 1) and ¢, is the constant from 2).

In [8]] it is also proved that the weighted spaces

{F:F85 € La(E), DO f - g5 € Lo(E?), Vo € RONG |
are topologically equivalent to WZEKS (E?). More exactly.

Lemma 1([8], Lemma?2). Let R be aregular polyhedron in Ng and & > 0.
Then, for any § C (0, &) there exist constants C; = C; (&) > 0, C = C»(p) > 0 such
that for all 6 € (0, &) the following estimates hold for Vu € W29,{5 (E?):

Y ID%ugs)ll < Y, I(P%u)gsll, <Ci ), 1D(ugs)ll,, (1)

a€RNN3 a€RNN3 a€RNN3

- -5
Gl Y ID%ugs)l < Y I(D%we ¥, <6 Y (1D (ugs)lliy-
a€RNN3 a€RNN? a€RNN3
)

Lemma 2. Let P(Dy,D;) be an almost hypoelliptic operator with the
characteristic polynomial R(P). There exists a constant C > 0 such that for a
sufficiently small 6 > 0 the following holds

R
Y (D%u)gs|le, < Cllugs|iz,, Yue Wyy (E>)NN(P,5).
aERNNZ
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Proof. First, note that C7(E?) is dense in W;‘él)) (E?) (see [5]), Lemma 3).
Then, in view of regularity of operator P(D) and the Parseval equality, applying the
Fourier transformation, we get for u € W;R a(P) (E?)

Y 0%wsesl, < G Y [1D%(ugs)lle, =
aERNN? aERNNG

— o ¥ ([, [ 0tussra)’ =

a€RNN3

- a ¥ ([ lerussera)’ <

oceERrWZ

IN

Co( [, [ PP+ 11 (g )Pt
&(( /Rz / <\P<~é>|F<z,:g5><¢>|2ds:)é +
+ / [(Fuss) ©)Fag)) =

= o(( [/ (D>(ugs)(x)|2dx)5

+ (L [l ran?) =

= G([|P(D)(ugs |z, + l[ugs LD,

where C; and C, are some constants and F(u) is the Fourier transformation of the
function u. We apply the Leibniz generalized formula and take into account that
(P(®)) € R(P) (since R(P) is regular). Then, according to property 2) of g5 with
0 €(0,1), we derive

IN

Y o), <] pwmes|| +
aeRNNE 2 2
DO(
+ Y ( LY [ )§C3< Y sl| +|ugs )
0£0eN; L2 L2 a€RNNZ L2 L2
where C3 > 0 is some constant.
1
Thus, for ;6 < 3 we obtain
R
Y (0u)gslle, < 2C3|[ugs |1, Y € Wyg” (R?) AN(P,5). O

aERNNG

Lemma 3. Let Py(Dy,D;) be an almost hypoelliptic operator with the
characteristic polyhedron R(Py) and a number & € (0,1) is such that for all
8 € (0,8) the following inclusion N(Py,8) C Mj>_oW,"s(E?) is true. Then, for all
o€ jR(Py), j=0,1,..., there exists a constant C > 0 such that

1(D*u)gs 2, < (2€)|lugs Ly, Yu € N(Po, ).
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Proof. Let a € jR(Py)NN3. Then, there exists a § € R(Ry) NNy and a
y € (y— 1)R(Py) NN such that o = 8 + . According to the conditions of Lemma,
we have
DY e W\ (E?) NN (Ry, 8)

for u € W, ( )(EZ) NN(Py,d). Then, in view of Lemma 2, the following estimate
holds

I(D%u)gsl|z, = IDP (D7u)gs]|1, < 2C]||(D"u)gs]|L,-
By the similar argument, taking into account that 0- R(Py) = {0}, after (j — 1) steps
we get |[[(D%u)gs||, < (2C)||ugs|lL,, Vu € N(Ry, 8). O
Corollary. Let the conditions of Lemma 3 be valid with some constant
C=C(u)>0forall @ € jJR(P)\ (j—1)R(P),j=1,2... Then, the following holds
”(Da”)gé'”Lz < CWHI) Vu e N(PO’ 6)

Proof. The statement follows from Lemma 3 and the following observa-
tions that for all @ € jR(Ry) \ (j — 1)R(R)

(j—Dmin(m;,my) < oq+ 0 < j(my+my), j=1,2,...,

and |jugs||, <o, u € N(R,9).
The Main Result.
Theorem. For any compact set K C E? and for any function u € N(Py, )
the following estimate holds
sup [D%u(x)| < Cl**! vo e N2,
xekK
where C = C(K,u) is some constant and 0 > 0 is sufficiently small.
Proof. There exists a constant C > 0 that for all u € C*(E?) the following

holds sup |u(x)| < Z // \DPuldx, where K DD K, (p(dK;,K) > 0). Now,
rek |B<2

from Corollary we get sup |(D%u)gs| < C; o1 , Va e NO with some constant C; > 0.

Applying the property 1) of gs leads us to the following estimate

sup |[D%u| < Gyl < C'f"“, Voo e NO,
xekK
with some constants C,,C3 > 0. O
Remark. From this estimate we conclude that for a sufficiently small
4 > 0 the following holds N(Py, 8) C Ap.
Applying similar observations with some modifications, we can prove for a
sufficiently small 8 > 0 and for any f € I'4(E?), a > 1, that

N(Py, f,8) = {u,u-e " € L, (E?),P(D)u = f} C T$(E?),
where T4(E2) = { f5[Df - 21|, < I+ rplel |
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