ON MINIMAL COSET COVERING OF SOLUTIONS
 OF A BOOLEAN EQUATION

A. V. MINASYAN *

Chair of Discrete Mathematics and Theoretical Informatics YSU, Armenia

For the equation $x_{1} x_{2} \ldots x_{n}+x_{n+1} x_{n+2} \ldots x_{2 n}+x_{2 n+1} x_{2 n+2} \ldots x_{3 n}=1$ over the finite field F_{2} we estimate the minimal number of systems of linear equations over the same field such that the union of their solutions exactly coincides with the set of solutions of the equation. We prove in this article that the number in the question is not greater than $9 n^{\log _{2} 3}+4$.

MSC2010: 97H60; 14N20, 51E21.
Keywords: linear algebra, covering with cosets, blocking set.
Introduction. Let F_{2} be the finite field of 2 elements and F_{2}^{n} be an n-dimensional linear space over F_{2}. A coset of a linear subspace L in F_{2}^{n} is a translation of L, i.e. a set $\alpha+L \equiv\{\alpha+x \mid x \in L\}$ for some $\alpha \in F_{2}^{n}$. It is known that any k-dimensional coset in F_{2}^{n} can be represented as a set of solutions of a certain system of linear equations over F_{2} of rank $n-k$ and vice versa.

Let A be a set of vectors in F_{2}^{n}. We say that a set of cosets $\left\{L_{1}, L_{2}, \ldots, L_{k}\right\}$ is a covering for the set A, if and only if $L_{i} \subseteq A$ for $1 \leq i \leq k$ and $A=\bigcup_{i=1}^{k} L_{i}$. The length of the covering is the number of its cosets.

The purpose of this article is to estimate the minimal number of cosets in $F_{2}^{3 n}$ covering the set of all solutions of the equation

$$
\begin{equation*}
x_{1} x_{2} \ldots x_{n}+x_{n+1} x_{n+2} \ldots x_{2 n}+x_{2 n+1} x_{2 n+2} \ldots x_{3 n}=1 \tag{1}
\end{equation*}
$$

The problem of the shortest or minimal coset covering of subsets in finite fields was introduced and investigated in $[1-3]$. It is clear that the coset in $F_{2}^{3 n}$ that corresponds to the system below is a subset of the set of solutions of the Eq. (1)

$$
\left\{\begin{array}{l}
x_{i}=1, \quad i=1,2, \ldots, n \\
x_{n+1}=0 \\
x_{2 n+1}=0
\end{array}\right.
$$

One can construct a covering with $3 n^{2}$ such cosets and one coset containing $(1,1, \ldots, 1)$ vector. The following theorem shows that a covering with an essentially smaller length exists.

[^0]Theorem 1. Eq. (1) has a covering with a length $\leq 9 n^{\log _{2} 3}+4$.
Blocking Sets. We employ the notion of a blocking set (see [4|5]). k-blocking set in F_{2}^{n} is a subset in F_{2}^{n} that has at least one common vector with each k-dimensional coset. Any 1 -blocking set must contain at least $2^{n}-1$ vectors, since any pair of vectors forms a coset of dimension 1 .

Let $e_{1}, e_{2}, \ldots, e_{n}$ be a standard basis in F_{2}^{n}. Define B by

$$
\left\{0, e_{1}, e_{2}, \ldots, e_{n}\right\} \cup\left\{e_{i}+e_{j} \mid 1 \leq i<j \leq n\right\} .
$$

We are going to show that B is a $(n-2)$-blocking set. Let L be a coset of dimension $n-2$. If it contains the 0 vector then, B intersects with L, otherwise L coincides with the set of solutions of a linear system over F_{2} of the form

$$
\left\{\begin{array}{l}
\alpha_{1} x_{1}+\alpha_{2} x_{2}+\ldots+\alpha_{n} x_{n}=1, \\
\beta_{1} x_{1}+\beta_{2} x_{2}+\ldots+\beta_{n} x_{n}=1,
\end{array}\right.
$$

where the equations are linearly independent (if the right part of one of the equations is 0 we replace that equation with a sum of the initial two equations).

If $\alpha_{i}=\beta_{i}=1$ for some i, then $e_{i} \in L$. Otherwise $i \neq j$ exist such that $\alpha_{i}=1, \beta_{i}=0, \alpha_{j}=0, \beta_{j}=1$. In this case $e_{i}+e_{j} \in L$. Hence, B is a $(n-2)$-blocking set containing $1+n+\frac{n(n-1)}{2}=\frac{n^{2}+n}{2}+1=O\left(n^{2}\right)$ vectors.

Theorem 2. The number of vectors in a minimal ($n-2$)-blocking set in $F_{2}^{n} \backslash\{0\}$ is not greater than $3 n^{\log _{2} 3}$.

Proof. We construct a ($n-2$)-blocking set for $F_{2}^{n} \backslash\{0\}$ containing not more than $3 n^{\log _{2} 3}$ vectors.

Let n be a power of 2 . We construct the sets $F(n)$ recursively, so that $F(n)$ is a $(n-2)$-blocking set for $F_{2}^{n} \backslash\{0\}$, i.e. $F(n)$ has a common vector with each coset of dimension $n-2$ that does not contain the 0 vector.

Define $F(2)=\{(0,1),(1,0),(1,1)\}$. Let $F(n)$ be a $(n-2)$-blocking set for $F_{2}^{n} \backslash\{0\}$. We construct $F(2 n)$ as follows.

Each vector $\left(\alpha_{1}, \alpha_{2}, \ldots, \alpha_{n}\right) \in F(n)$ generates exactly 3 different vectors in $F(2 n):\left(\alpha_{1}, \alpha_{2}, \ldots, \alpha_{n}, \alpha_{1}, \alpha_{2}, \ldots, \alpha_{n}\right),\left(\alpha_{1}, \alpha_{2}, \ldots, \alpha_{n}, 0,0, \ldots, 0\right) \quad$ and $\left(0,0, \ldots, 0, \alpha_{1}, \alpha_{2}, \ldots, \alpha_{n}\right)$.

Hence, $|F(2 n)|=3|F(n)|$, where $|A|$ stands for the number of elements in A. Now we verify that $F(2 n)$ is a $(2 n-2)$-blocking set for $F_{2}^{2 n} \backslash\{0\}$. Let L be a nonzero coset of dimension $2 n-2$ in $F_{2}^{2 n} \backslash\{0\}$. As shown above L coincides with the set of solutions of the following linear system over F_{2} consisting of the following equations:

$$
\left\{\begin{array}{l}
\alpha_{1} x_{1}+\alpha_{2} x_{2}+\ldots+\alpha_{n} x_{n}+\alpha_{n+1} x_{n+1}+\ldots+\alpha_{2 n} x_{2 n}=1, \tag{2}\\
\beta_{1} x_{1}+\beta_{2} x_{2}+\ldots+\beta_{n} x_{n}+\beta_{n+1} x_{n+1}+\ldots+\beta_{2 n} x_{2 n}=1 .
\end{array}\right.
$$

Define $A_{1}=\left(\alpha_{1}, \ldots, \alpha_{n}\right), \quad A_{2}=\left(\alpha_{n+1}, \ldots, \alpha_{2 n}\right), \quad B_{1}=\left(\beta_{1}, \ldots, \beta_{n}\right)$ and $B_{2}=\left(\beta_{n+1}, \ldots, \beta_{2 n}\right)$. Obviously, both A_{1} and A_{2} or both B_{1} and B_{2} cannot be 0 vectors. We consider the following 3 cases:

1) A_{1} and B_{1} are both nonzero vectors; 2) A_{2} and B_{2} are both nonzero vectors;

3a) A_{1}, B_{2} are nonzero and A_{2}, B_{1} are zero vectors;
3b) A_{2}, B_{1} are nonzero and A_{1}, B_{2} are zero vectors.

In the case 1) consider the system

$$
\left\{\begin{array}{l}
\alpha_{1} x_{1}+\ldots+\alpha_{n} x_{n}=1 \\
\beta_{1} x_{1}+\ldots+\beta_{n} x_{n}=1
\end{array}\right.
$$

Solutions of this system form a $(n-2)$-dimensional coset in F_{2}^{n}. Therefore, one of the solutions, say $\left(x_{1}^{0}, \ldots, x_{n}^{0}\right)$, belongs to $F(n)$. Then $\left(x_{1}^{0}, \ldots, x_{n}^{0}\right)$ appended with n zeros gives a solution for the System (2), which belongs to $F(2 n)$. We deal with the case 2) in a similar way.

In the case 3a) consider the system

$$
\left\{\begin{array}{l}
\alpha_{1} x_{1}+\ldots+\alpha_{n} x_{n}=1 \tag{3}\\
\beta_{n+1} x_{1}+\ldots+\beta_{2 n} x_{n}=1 .
\end{array}\right.
$$

Solutions of this system form a $(n-2)$-dimensional coset in F_{2}^{n}. Therefore, one of the solutions, say $\left(x_{1}^{0}, \ldots, x_{n}^{0}\right)$, belongs to $F(n)$. Then $\left(x_{1}^{0}, \ldots, x_{n}^{0}, x_{1}^{0}, \ldots, x_{n}^{0}\right)$ gives a solution for the System (3), which belongs to F_{2}^{n}. We deal with the case 3 b) in a similar way.

Now we claim that $F(2 n)$ is a $(2 n-2)$-blocking set for $F_{2}^{2 n} \backslash\{0\}$.
We have that $|F(2)|=3,|F(2 n)|=3|F(n)|$; therefore for $n=2^{k}$ it follows that $|F(n)|=3^{k}=3^{\log _{2} n}=n^{\log _{2} 3}$.

Now let us consider the general case when n is arbitrary.
It is easy to verify that the number of elements in a minimal $(n-2)$-blocking set for $F_{2}^{n} \backslash\{0\}$ is a nondecreasing function depending on n (dropping the last coordinate in all vectors and forming a $(n-2)$-blocking set for $F_{2}^{n} \backslash\{0\}$ gives a $(n-3)$-blocking set for $\left.F_{2}^{n-1} \backslash\{0\}\right)$. If $2^{k}<n \leq 2^{k+1}$, then the number of elements in a minimal ($n-2$)-blocking set for $F_{2}^{n} \backslash\{0\}$ is not greater than the number of elements in a minimal ($2^{k+1}-2$)-blocking set for $F_{2}^{2^{k+1} \backslash\{0\} \text {, which is not greater }}$ than 3^{k+1}. Since $k<\log _{2} n$, we have $3^{k+1}<3 \cdot 3^{\log _{2} n}=3 n^{\log _{2} 3}$.

Corollary. The number of vectors in a minimal $(n-2)$-blocking set in F_{2}^{n} is not greater than $3 n^{\log _{2} 3}+1$.

We can get $(n-2)$-blocking set in F_{2}^{n} by adding $(0,0, \ldots, 0)$ vector to ($n-2$)-blocking for $F_{2}^{n} \backslash\{0\}$.

Proof of Theorem 1. We start with some technical propositions that can be easily verified.

For $A \subseteq F_{2}^{n}$ and $B \subseteq F_{2}^{m}$ we define
$A \times B=\left\{\left(\alpha_{1}, \ldots, \alpha_{n}, \beta_{1}, \ldots, \beta_{m}\right) \mid\left(\alpha_{1}, \ldots, \alpha_{n}\right) \in A,\left(\beta_{1}, \ldots, \beta_{m}\right) \in B\right\}$.
Proposition 1. Let A and B be cosets in F_{2}^{n} and F_{2}^{m} respectively. Then $A \times B$ is a coset in F_{2}^{n+m} and $\operatorname{dim}(A \times B)=\operatorname{dim} A+\operatorname{dim} B$.

Proposition 2. Let cosets L_{1}, \ldots, L_{k} form a covering for the set of all solutions of the equation $x_{1} x_{2} \ldots x_{n}=0$ in F_{2}^{n}, such that any pair of different solutions belongs to at least one of cosets $L_{i}, i=1, \ldots, n$. Then cosets $L_{1} \times L_{1}, L_{2} \times L_{2}, \ldots$, $L_{k} \times L_{k}$ form a covering for the set of all solutions except $x_{i}=1, i=1, \ldots 2 n$, in $F_{2}^{2 n}$ for the equation $x_{1} x_{2} \ldots x_{n}+x_{n+1} x_{n+2} \ldots x_{2 n}=0$.

Proposition 3. Let cosets L_{1}, \ldots, L_{k} form a covering for the set of all solutions of the equation $x_{1} x_{2} \ldots x_{n}=0$ in F_{2}^{n}. Then there exists a coset covering for
the same set consisting of $n-1$-dimensional cosets H_{1}, \ldots, H_{k}, such that $L_{i} \subseteq H_{i}$ for $i=1,2, \ldots, k$.

Proof. This immediately follows from the fact that a system of linear equations defining the coset L_{i} must contain at least one equation, which cannot be satisfied with the vector $(1,1, \ldots, 1)$.

This single equation defines the $(n-1)$-dimensional coset H_{i}.
Proposition 4. For any pair of vectors from $F_{2}^{n} \backslash\{(1,1, \ldots, 1)\}$ there exists a $(n-1)$-dimensional coset that contains both vectors and does not contain the vector $(1,1, \ldots, 1)$.

Starting from this point we will refer to $(n-1)$-dimensional cosets as hyperplanes.

Proposition 5. A hyperplane covering of length k for the set $F_{2}^{n} \backslash\{(1,1, \ldots, 1)\}$ such that any pair of vectors in $F_{2}^{n} \backslash\{(1,1, \ldots, 1)\}$ belongs to at least one of the covering hyperplanes exists, if and only if there exists an analogous covering for $F_{2}^{n} \backslash\{(0,0, \ldots, 0)\}$.

Proof. This becomes obvious, if one notes that $F_{2}^{n} \backslash\{(1,1, \ldots, 1)\}$ transforms into $F_{2}^{n} \backslash\{(0,0, \ldots, 0)\}$, the vector $(1,1, \ldots, 1)$ into $(0,0, \ldots, 0)$ and a hyperplane not containing $(1,1, \ldots, 1)$ into a hyperplane not containing $(0,0, \ldots, 0)$ when the vector $(1,1, \ldots, 1)$ is added to all vectors in F_{2}^{n}.

Lemma. The existence of a minimal hyperplane covering for $F_{2}^{n} \backslash\{(0,0, \ldots, 0)\}$ such that any pair of vectors in $F_{2}^{n} \backslash\{(0,0, \ldots, 0)\}$ belongs to at least one of the covering hyperplanes is equivalent to the existence of a minimal $(n-2)$-blocking set for $F_{2}^{n} \backslash\{(0,0, \ldots, 0)\}$.

Proof. Let H_{1}, \ldots, H_{k} be a covering by hyperplanes for $F_{2}^{n} \backslash\{(0,0, \ldots, 0)\}$ such that any pair of vectors in $F_{2}^{n} \backslash\{(0,0, \ldots, 0)\}$ belongs to at least one of the hyperplanes. Let H_{i} be defined by an equation $\alpha_{1}^{i} x_{1}+\ldots+\alpha_{n}^{i} x_{n}=1, i=1,2, \ldots, k$. Define $H=\left\{\left(\alpha_{1}^{i}, \ldots, \alpha_{n}^{i}\right) \mid i=1,2, \ldots, k\right\}$. We prove that H is a $(n-2)$-blocking set for $F_{2}^{n} \backslash\{(0,0, \ldots, 0)\}$. Indeed, let a $(n-2)$-dimensional coset in $F_{2}^{n} \backslash\{(0,0, \ldots, 0)\}$ is defined by a system

$$
\left\{\begin{array}{l}
\beta_{1} x_{1}+\ldots+\beta_{n} x_{n}=1 \tag{4}\\
\gamma_{1} x_{1}+\ldots+\gamma_{n} x_{n}=1
\end{array}\right.
$$

For a pair of vectors $\left(\beta_{1}, \ldots, \beta_{n}\right)$ and $\left(\gamma_{1}, \ldots, \gamma_{n}\right)$ there exists a hyperplane that covers both vectors, i.e. for some i we have $\alpha_{1}^{i} \beta_{1}+\ldots+\alpha_{n}^{i} \beta_{n}=1$ and $\alpha_{1}^{i} \gamma_{1}+\ldots+\alpha_{n}^{i} \gamma_{n}=1$, i.e. the vector $\left(\alpha_{1}^{i}, \ldots, \alpha_{n}^{i}\right)$ is the requested common vector for the coset and H.

Let us now $H=\left\{\left(\alpha_{1}^{i}, \ldots, \alpha_{n}^{i}\right) \mid i=1,2, \ldots, k\right\}$ be a $(n-2)$-blocking set for $F_{2}^{n} \backslash\{(0,0, \ldots, 0)\}$. Denote by H_{i} the hyperplane in $F_{2}^{n} \backslash\{(0,0, \ldots, 0)\}$ defined by an equation $\alpha_{1}^{i} x_{1}+\ldots+\alpha_{n}^{i} x_{n}=1, i=1, \ldots, k$. We prove that H_{1}, \ldots, H_{k} form a covering for $F_{2}^{n} \backslash\{(0,0, \ldots, 0)\}$ such that any pair of vectors in $F_{2}^{n} \backslash\{(0,0, \ldots, 0)\}$ belongs to at least one of the hyperplanes. Indeed, let $\left(\beta_{1}, \ldots, \beta_{n}\right)$ and $\left(\gamma_{1}, \ldots, \gamma_{n}\right)$ be different vectors from $F_{2}^{n} \backslash\{(0,0, \ldots, 0)\}$. Consider a $(n-2)$-dimensional coset in $F_{2}^{n} \backslash\{(0,0, \ldots, 0)\}$ defined by the System (4). There exists a common vector for H and this coset, that means for some i we have $\alpha_{1}^{i} \beta_{1}+\ldots+\alpha_{n}^{i} \beta_{n}=1$ and
$\alpha_{1}^{i} \gamma_{1}+\ldots+\alpha_{n}^{i} \gamma_{n}=1$. This implies that both vectors $\left(\beta_{1}, \ldots, \beta_{n}\right)$ and $\left(\gamma_{1}, \ldots, \gamma_{n}\right)$ are covered by H_{i}.

Finally, we complete the proof of Theorem 1. We split the set of all solutions of the Eq. (1) into four disjoint subsets:
$A=\left\{\left(\alpha_{1}, \ldots, \alpha_{3 n}\right) \mid \alpha_{1} \ldots \alpha_{n}=1, \alpha_{n+1} \ldots \alpha_{2 n}=0, \alpha_{2 n+1} \ldots \alpha_{3 n}=0\right\}$,
$B=\left\{\left(\alpha_{1}, \ldots, \alpha_{3 n}\right) \mid \alpha_{1} \ldots \alpha_{n}=0, \alpha_{n+1} \ldots \alpha_{2 n}=1, \alpha_{2 n+1} \ldots \alpha_{3 n}=0\right\}$,
$C=\left\{\left(\alpha_{1}, \ldots, \alpha_{3 n}\right) \mid \alpha_{1} \ldots \alpha_{n}=0, \alpha_{n+1} \ldots \alpha_{2 n}=0, \alpha_{2 n+1} \ldots \alpha_{3 n}=1\right\}$,
$D=\{(1, \ldots, 1)\}$.
Assume we have a coset covering for the set of solutions of the equation

$$
\begin{equation*}
x_{1} x_{2} \ldots x_{n}+x_{n+1} x_{n+2} \ldots x_{2 n}=0 \tag{5}
\end{equation*}
$$

of the length $g(n)$. We can construct a coset covering for the Eq. (1) as follows. First we form a covering for the set A expanding all $2 n$-dimensional vectors in cosets of the covering for the Eq. (5) to $3 n$-dimensional by placing the n-dimensional vector $(1,1, \ldots, 1)$ at the beginning of each $2 n$-dimensional vector in cosets of the covering for the Eq. (5). Similarly we can cover B and C placing the vector $(1,1, \ldots, 1)$ as appropriate in the middle and at the end of $2 n$-dimensional vectors. Finally, D is covered by a 0 -dimensional coset that consists of the $3 n$-dimensional vector $(1,1, \ldots, 1)$. Hence, we obtain a covering of the length equal to $3 g(n)+1$.

Using Lemma, we conclude that a $(n-2)$-blocking set for $F_{2}^{n} \backslash\{(0,0, \ldots, 0)\}$ with not more than $3 n^{\log _{2} 3}$ elements from Theorem 2 can be converted into a covering by hyperplanes for $F_{2}^{n} \backslash\{(0,0, \ldots, 0)\}$ of the same length, such that any pair of vectors in $F_{2}^{n} \backslash\{(0,0, \ldots, 0)\}$ belongs to at least one of the hyperplanes from the covering. Then, using Proposition 5, we can obtain a covering of the same length by hyperplanes of the set $F_{2}^{n} \backslash\{(1,1, \ldots, 1)\}$ such that any pair of vectors in $F_{2}^{n} \backslash\{(1,1, \ldots, 1)\}$ belongs to at least one of the hyperplanes of the covering. Finally, using Proposition 3, we obtain a coset covering for the Eq. (5) of a length not greater than $3 n^{\log _{2} 3}+1$. Hence, $g(n) \leq 3 n^{\log _{2} 3}+1$ and the covering for the Eq. (1) constructed above has a length not greater than $3 g(n)+1 \leq 9 n^{\log _{2} 3}+4$.

Received 22.01.2015

REFERENCES

1. Alexanyan A.A. Disjunctive Normal Forms Over Linear Functions. Theory and Applications. Yer.: YSU Press, 1990 (in Russian).
2. Alexanyan A.A. Realization of Boolean Functions by Disjunctions of Products of Linear Forms. // Soviet Math. Dokl., 1989, v. 39, № 1, p. 131-135 (in Russian).
3. Alexanyan A.A., Serobyan R.K. Covers Concerned with the Quadratic Over Finite Field Equations. // Dokl. AN Arm. SSR, 1992, v. 93, № 1, p. 6-10 (in Russian).
4. Alexanyan A.A., Papikyan M. On Blocking Sets of Affine Spaces. // arXiv:math.CO/9910084, 1999, v. 1.
5. Jamison R. Covering Finite Fields with Cosets of Subspaces. // J. Combin. Theory, Ser. A, 1977, v. 22, p. 253-266.

[^0]: * E-mail: ashot.minasya@gmail.com

