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In thе paper characters of propagation of elastic waves in layer with 

continuously changing periodical heterogeneity along layer are investigated. 
Numerical results of dependence of wave propagation phase velocity from 
determining parameters of heterogeneity of wavelength are shown. 
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1. Introduction. There are numerous researches for the propagation of 

spread waves in flat layer at available heterogeneity in thick layer. Discussions of 
works in waveguide with periodical repetitive piecewise permanent heterogeneity 
along layer are contained [1–2]. Surface waves in weak-inhomogeneous elastic 
surroundings are considered in [3–6]. 

 It is suggested that elastic waveguide takes area ,x     0 ,y b   
z     in rectangular cartesian system ( , , ).x y z  Propagation of pure elastic 

wave is observed (the antiplane problem)  
 0, , ,u v w w x y t                                        (1.1)  

with following  motion equation: 
2 2( ) .zx zyx y x w t                                                  (1.2) 

According to Hooke’s law the density of material, as well as the shear 
modulus ( ),x  are functions of longitudinal coordinate x : 

( ) , ( ) .zx zyx w x x w y        
  

                               (1.3) 
It is accepted that ( ), ( )x x   are weak changing periodical functions 

   0 1 1 0 2 1( ) 1 sin , ( ) 1 sinx x x x           ,                 (1.4) 

where 2 2
1 1 2/ , 1, 1.a       From (1.2–1.4) the following equation is received                                 
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   2 2 2
1 1 1 1 1 2 11 sin cos 1 sin ,tx w x w x c x w t                          (1.5) 

where  2 2 2 2 2
0 0/ / , /tx y c          .                           

2.   It is assumed that plane borders of waveguide are fixed 
0w    when  0, .y b                                          (2.1) 

In that case the solution of (1.5) satisfying boundary condition (2.1) is shown 
with the following 

  ( ) sin , , 1,2, ...ni t
n n nw w x e y n b n                         (2.2) 

The substitution of (2.2) in (1.5) leads to sequential ordinary differential 
equations 

   2 2 2
1 1 1 1 1 2 1 11 sin cos 1 sin 0,n n n n n nx w x w x w                      (2.3) 

where 2 2 2 2.n t n nc     
The solution of (2.3) with changing periodical coefficients is being looked 

for in the following form 

0
1
( cos sin ), .n n mn m mn m m

m
w a a x b x m a   




                   (2.4) 

Demanding (2.4) to satisfy (2.3) is received sequential related system of 
homogeneous algebraic equations: 

2 2 2
0 1 1 1 1( 1) ( ) / 2 0,n n n na b                                         (2.5) 

2 2
2 1 0 1 1 2 1 2 1 2

1 1 2 1 2 1 2

( ) ( ) / 2 0,
( ) / 2 0

n n n n n

n n

a b a
a b

        
    

     


  
                   (2.6) 

and  for 2m  

       1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1

( ) / 2 ( ) / 2 0,

( ) / 2 ( ) / 2 0.
m m m n m mn m m m n

m m m n m mn m m m n

a b a

b a b

        

        
     

     

     

     

      

 (2.7) 

In (2.5)–(2.7) are accepted the following designations 
   2 2 2 2 2 2

2 1 1( 1) , ( ) .m n n m m n n m                             (2.8) 
3. Zero-order approximation according to (2.5) 

2 2
0( 1) 0,n n na      

so 
2 1.n                                                          (3.1) 

In this approximation x  (thick variations) undependent frequencies of variations are 
received. For first approximation from (2.5) and (2.6), taking into account 
conditions 2 20, 0n na b   and designation (2.8), will obtain 

2 2 2
0 1 1 1 1

2 2 2 2 2
2 1 0 1 1

2 2 2
1 1

( 1) ( ) / 2 0,

( ) [ ( 1) ] 0,

[ ( 1) ] 0.

n n n n

n n n n n n

n n n

a b

a b

a

    

      

  

    
     
   

                  (3.2) 

The equality of determinant of system (3.2) to zero leads to two equations 
with 2 :n  
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2
2 1

21 0n
n





    and 

2 2 2 2
4 22 1 1 2 1 1

2 21 2 1 1 0.
2 2 22n n

n n

     
 

 
    

           
       

 (3.3) 

First equation will have the following solution 
2

2 1
21n
n





   or 

2
2 1 .n

b n
a

     
 

                                 (3.4) 

The solution of second (biquadratic) equation will have the following form 
22 2 2 2 2 2

22 1 1 2 1 1 2 1 1 2
2 2 21 1 1 1 1 .

2 2 2 2 22 2n
n n n

         


  
      

                
         

 (3.5) 

Here the signs – and + match with thick variation and with the appearance of 
new phasic velocities correspondingly. 

4. Let introduce new variables 2 2 2 2 2 2 2 2
1 1( ) , .n n n n t n nan b c            

With new variables relations (2.5)–(2.7) can be shown in the following forms 
0

1 0
1

2 ,n n
Ab a

D
                                                    (4.1) 

   

0 1
2 0 1

2 2

1
2 1

2

2 2 ,

2 ,

n n n

n n

D Aa a b
D D

Ab a
D

  

  


                                              (4.2) 

1 1
1 1

1 1
1 1

2 ,

2 0, 2,3,...,

m m
m n m n mn

m m

m m
m n m n mn

m m

D Aa a b
D D

D Ab b a m
D D

 
 

 
 


 



    

                  (4.3) 

where 
2 2 2

2 1 1, ( 1), 0,1,2,...k n n k n nA k D k k k                       (4.4) 
Taking into account (4.4) for 01 nb , from (4.1) will have the following 

2

02
2 1

2( ) 0.n n
n

n n

a
  
 


 

                                              (4.5) 

We will obtain 2 0,n n    because of condition of nontrivial solution and 

0 0.na   This is an equation for zero approximation, but only for new variables. 
From (4.1) and (4.2), for 0 10, 0n na a    (non triviality) and 2 20, 0n na b    we 
will obtain two equations for first approximation: 
 

0 2 0 1 1 2 1 22 / 4 / 0, 2 / 0.D D A A D D A D                      (4.6) 
These two equations coincide with equations written in (3.3). In common 

case, applying difference equations (4.1)–(4.3), we can calculate coefficients 1m na   
and 1m nb   for any 1,2,3,...m   Then each of 1m na   and 1m nb   will have common 
multiplier 0na  or 1 .na  We will obtain two equations for m-order approximation 
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interrupting calculations with substitutions 1 0m na    and 1 0,m nb    and by 
condition of nontrivial solution, i.e. 0 0,na  1 0.na   These equations coincide with 
the equations received from determinant that has the form of two multipliers. 

In the case of first order approximation the solution of one from two 
equations gives the curves shown in Fig. 1,a  and the solution curves of the other 
equation are shown in Fig. 1,b. Here and in further cases the calculations are made 
for 1 0.1,   2 0.05.   
 
 
 
 
 
     
 
                                                  a                                                                 b 

Fig. 1. 
 

Solution curves: a)  for one equation from two in first order approximation; 
 b) for the other equation in first order approximation. 

               
 

 
 
 
 
 
 
 
 
 
 

Fig. 2. Difference of nearly overlayed curves. 
 
Overlaying these two graphs will obtain graph similar to Fig. 1,b, but we can 

not state they overlay. Fig. 2 shows the difference of nearly overlayed curves. This 
difference becomes more for bigger n . In fact we have 6 curves in the case of first 
order approximation. 

In the case of second order approximation the solution curves for two equations 
are shown in Fig. 3,a  and  Fig. 3,b separately. 

 

 
 
 
 
 
 
 
                                                  a                                                                 b 

 
                                                   a                                                                 b 

Fig. 3. 
 

Solution curves: a)  for one equation from two in second order approximation;  
   b) for the other equation in second order approximation. 



Proc. of the Yerevan State Univ. Phys. and Mathem. Sci., 2015, № 1, p. 36–40.  
 

40 

 
 
 
 
 
 
 

 
                                              a                                                                 b 

Fig. 4. 
 

Solution curves: a)  for one equation from two in third order approximation;  
 b)  for the other equation  in third order approximation. 

 
In Fig. 3,a is given the graph of more exact frequency Fig. 1,a  and  two new 

curves of frequency. Analogous graphs in third order approximation are shown in 
Fig. 4,a  and  Fig. 4,b.  
 

Received 04.11.2014  
 

 
 

R E F E R E N C E S  
 

1. Avetisyan A.S., Kamalyan A.A. On Propagation of Electroelastic Shear Wave in 6 mm Class 
Piezodielectric Inhomogeneous Layer. //  Dokladi NAN Armenii, 2014, v. 114,  № 2,  p. 108–115 
(in Russian). 

2. Gachkevich A., Khazaryan K., Terzyan G. Shear Waves in Anisotropic Unidirectional 
Periodical Structure. In Collection “Problems of Dynamics of Interaction in Deformable 
Environments”. Trudi VIII Int. Conf. Goris–Stepanakert. Yer.: Chartaraget, 2014, p. 138–146        
(in Russian). 

3. Belubekian M.V. On the Propagation of Shear Waves Along a Corrugated Surface. // Dokladi 
NAN Arm. USSR,  1990,  v. 90,  № 2,  p. 71–74. 

4. Belubekian M.V., Mukhsikhochoyan A.R. On the Shear “Standing” Surface Wave Existence 
Along a Corrugated Surface. // Dokladi NAN Armenii,  1992,  v. 93,  № 2,  p. 63–67. 

5. Belubekian M.V., Mukhsikhochoyan A.R. Shear Surface Waves in Weak Inhomogeneous 
Environments. // Acoustic Zhurnal,  1996,  v. 42,  № 2,  p. 179–182  (in Russian). 

6. Novackih V.  Theory  of  Elasticity.  M.:  Mir,  1975,  p. 872  (in Russian). 


