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Introduction. We consider finite, undirected, connected graphs without loops
and multiple edges containing at least one edge. For any graph G we denote by V (G)
and E(G) the sets of vertices and edges of G, respectively. For any x ∈ V (G) dG(x)
denotes the degree of the vertex x in G. For a graph G δ (G) and ∆(G) denote the
minimum and the maximum degree of a vertex in G, respectively.

An arbitrary nonempty finite subset of consecutive integers is called
an interval. An interval with the minimum element p and the maximum element
q is denoted by [p,q].

A function ϕ : E(G)→ [1, t] is called a proper edge t-coloring of a graph G, if
each of t colors is used, and adjacent edges are colored differently.

The minimum value of t for which there exists a proper edge t-coloring of a
graph G, is denoted by χ ′(G) [1].

For any graph G and for any t ∈ [χ ′(G), |E(G)|] we denote by α(G, t) the set
of all proper edge t-colorings of G.

Let us also define a set α(G) of all proper edge colorings of a graph G:

α(G)≡
|E(G)|⋃

t=χ ′(G)

α(G, t).
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If ϕ ∈ α(G) and x ∈V (G), then the set {ϕ(e)/e ∈ E(G),e is incident with x}
is called a spectrum of the vertex x of the graph G at the proper edge coloring ϕ and
is denoted by SG(x,ϕ).

If G is a graph, ϕ ∈ α(G), then set

Vint(G,ϕ)≡ {x ∈V (G)/SG(x,ϕ) is an interval}

and
fG(ϕ)≡ |Vint(G,ϕ)|.

A proper edge coloring ϕ ∈ α(G) is called an interval edge coloring [2–4] of the
graph G, if and only if fG(ϕ) = |V (G)|. The set of all graphs having an interval edge
coloring is denoted by N. The terms and concepts, which are not defined can be
found in [5].

For a graph G and for any t ∈ [χ ′(G), |E(G)|], we set [6]:

µ1(G, t)≡ min
ϕ∈α(G,t)

fG(ϕ), µ2(G, t)≡ max
ϕ∈α(G,t)

fG(ϕ).

For any graph G, we set [6]:

µ11(G)≡ min
χ ′(G)≤t≤|E(G)|

µ1(G, t), µ12(G)≡ max
χ ′(G)≤t≤|E(G)|

µ1(G, t),

µ21(G)≡ min
χ ′(G)≤t≤|E(G)|

µ2(G, t), µ22(G)≡ max
χ ′(G)≤t≤|E(G)|

µ2(G, t).

Clearly, the µ-parameters are correctly defined for an arbitrary graph. Some
remarks on their interpretations in games are given in [7].

The exact values of the parameters µ11, µ12, µ21 and µ22 are found for
simple paths, simple cycles and simple cycles with a chord [8, 9], “Möbius ladders”
[6, 10], complete graphs [11], complete bipartite graphs [12, 13], prisms [10, 14],
n-dimensional cubes [14,15] and the Petersen graph [7]. The exact values of µ11 and
µ22 for trees are found in [16]. The exact value of µ12 for an arbitrary tree is found
in [17] (see also [18, 19]).

In this paper some relations between the µ-parameters of regular graphs are
obtained.

The Main Results. In the rest part of this paper we admit an additional
condition: an arbitrary graph G satisfies the inequality δ (G)≥ 2.

T h e o r e m 1. [8, 9]. For any integer k ≥ 2 the following equalities hold:

1. µ12(C2k) = µ22(C2k) = 2k,

µ21(C2k) = 2k−1;

2. µ11(C2k) =

{
1, if k = 2,
0, if k ≥ 3.
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T h e o r e m 2. [8,9]. For any positive integer k the following equalities hold:

1. µ12(C2k+1) = 2,

µ21(C2k+1) = µ22(C2k+1) = 2k;

2. µ11(C2k+1) =

{
2, if k = 1,
0, if k ≥ 2.

C o r o l l a r y 1 . [8, 9]. For any integer k ≥ 2 the inequalities
µ21(C2k)< µ12(C2k) and µ12(C2k+1)< µ21(C2k+1) hold.

T h e o r e m 3. [8, 9]. For any graph G the inequalities µ11(G) ≤ µ12(G) ≤
≤ µ22(G), µ11(G)≤ µ21(G)≤ µ22(G) hold.

Corollary 1 means that there are graphs G, for which µ21(G) < µ12(G), and
there are also graphs G, for which µ12(G)< µ21(G).

T h e o r e m 4. [8]. If G is a regular graph with χ ′(G) = ∆(G), then
µ12(G) = |V (G)|.

T h e o r e m 5. [20]. If G is an r-regular graph and ϕ ∈ α(G, |E(G)|), then

|Vint(G,ϕ)| ≤
⌊

r · |V (G)|−2
2 · (r−1)

⌋
.

C o r o l l a r y 2 . If G is an r-regular graph, then

µ2(G, |E(G)|)≤
⌊

r · |V (G)|−2
2 · (r−1)

⌋
.

C o r o l l a r y 3 . If G is an r-regular graph, then

µ21(G)≤
⌊

r · |V (G)|−2
2 · (r−1)

⌋
.

P r o p o s i t i o n . For arbitrary integers r ≥ 2 and n≥ 1 the inequality⌊
r ·n−2

2 · (r−1)

⌋
≤ n−1

holds.

Proof. ⌊
rn−2

2 · (r−1)

⌋
=

⌊
n
2
+

n−2
2 · (r−1)

⌋
≤
⌊

n
2
+

n−2
2

⌋
= n−1. �

C o r o l l a r y 4 . If G is a regular graph, then µ21(G)≤ |V (G)|−1.
From Corollary 4 and Theorem 4 we obtain:
C o r o l l a r y 5 . For an arbitrary regular graph G with χ ′(G) = ∆(G) the

inequality µ21(G)< µ12(G) holds.
T h e o r e m 6. For an arbitrary regular graph G the following four statements

are equivalent:

1. χ ′(G) = ∆(G), 2. G ∈N,

3. µ22(G) = |V (G)|, 4. µ12(G) = |V (G)|.
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Proof. The equivalence between 1) and 2) was proved in [2–4]. The
equivalence between 2) and 3) is evident.

Let us show the equivalence between 1) and 4).
If χ ′(G) = ∆(G), then by Theorem 4 we have the equality µ12(G) = |V (G)|. It

means that 1)⇒ 4).
Now suppose that µ12(G) = |V (G)|. By Theorem 3, we have also the equality

µ22(G) = |V (G)|. Consequently, using the equivalence between 2) and 3), we have
also the relation G ∈N. Finally, using the equivalence between 1) and 2), we have
also the equality χ ′(G) = ∆(G). Thus, 4)⇒ 1). �

Theorem 6 implies that the problem of determined whether µ12(G) = |V (G)|
for a given regular graph G is NP-complete.
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