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Definition of arithmetical functions with indeterminate values of arguments
is given. Notions of computability, strong computability and λ -definability
for such functions are introduced. Monotonicity and computability of every
λ -definable arithmetical function with indeterminate values of arguments is
proved. It is proved that every computable, naturally extended arithmetical
function with indeterminate values of arguments is λ -definable. It is also proved
that there exist strong computable, monotonic arithmetical functions with inde-
terminate values of arguments, which are not λ -definable. The δ -redex problem
for strong computable, monotonic arithmetical functions with indeterminate
values of arguments is defined. It is proved that there exist strong computable,
λ -definable arithmetical functions with indeterminate values of arguments, for
which the δ -redex problem is unsolvable.
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Introduction. The paper is devoted to arithmetical functions with indeter-
minate values of arguments. These functions are defined on the partially ordered
set M = N ∪{⊥}, where N is the set of natural numbers, ⊥ is the element, which
corresponds to indeterminate value. Each element of M is comparable with itself
and with ⊥, which is the least element of M. The notion of monotonic function is
introduced in the conventional way. A function is said to be naturally extended, if
its value is ⊥ whenever the value of at least one of the arguments is ⊥. These kind
of functions have been considered in [1]. In this paper the research is presented, the
start of which was given in [2].

Notions of computability and strong computability for arithmetical functions
with indeterminate values of arguments are introduced. The class of partial recursive
functions with indeterminate values of arguments is defined. It is proved that the
class of computable, naturally extended arithmetical functions with indeterminate
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values of arguments and the class of partial recursive functions with indeterminate
values of arguments are the same. The notion of primitive recursive function with
indeterminate values of arguments is introduced. It is proved that naturally extended
arithmetical functions with indeterminate values of arguments, for which the domain
of definition is finite, are primitive recursive.

Notion of λ -definability for arithmetical functions with indeterminate values
of arguments is introduced. It is proved that every λ -definable arithmetical func-
tion with indeterminate values of arguments is monotonic and computable. It is
proved, also, that every computable, naturally extended arithmetical function with
indeterminate values of arguments is λ -definable. It is proved that there exist strong
computable, monotonic, not naturally extended, arithmetical functions with indeter-
minate values of arguments, which are not λ -definable. It is also proved that there
exist strong computable, monotonic, not naturally extended arithmetical functions
with indeterminate values of arguments, which are λ -definable.

The δ -redex problem for strong computable, monotonic arithmetical functions
with indeterminate values of arguments is defined. An expression ϕ(υ1, . . . ,υk),
where ϕ : Mk → M,k ≥ 1, is a strong computable, monotonic arithmetical function
with indeterminate values of arguments, υi is from M or is a variable, i = 1, . . . ,k,
is called a δ -redex, if the value of the expression ϕ(υ1, . . . ,υk) is the same for any
value of the variables. It is proved that there exist strong computable, λ -definable
arithmetical functions with indeterminate values of arguments for which the δ -redex
problem is unsolvable.

Arithmetical Functions with Indeterminate Values of Arguments. Let
M = N ∪ {⊥}, where N = {0,1,2, . . .} is the set of natural numbers, ⊥ is the
element corresponding to the indeterminate value. Let us introduce the partial
ordering ⊆ on the set M. For every m ∈M we have: ⊥⊆ m and m ⊆ m. A mapping
ϕ : Mk → M,where k ≥ 1, is said to be an arithmetical function with indeterminate
values of arguments.

A function ϕ : Mk → M, k ≥ 1, is said to be computable, if there exists an
algorithm (Turing machine, see [3, 4]), which for all m1, . . . ,mk ∈M stops with value
ϕ(m1, . . . ,mk), if ϕ(m1, . . . ,mk) 6=⊥, and stops with the value⊥, or works infinitely,
if ϕ(m1, . . . ,mk) =⊥.

A function ϕ : Mk→M, k ≥ 1, is said to be strong computable, if there exists
an algorithm (Turing machine, see [3, 4]), which stops with the value ϕ(m1, . . . ,mk)
for all m1, . . . ,mk ∈M.

A function ϕ : Mk → M, k ≥ 1, is said to be monotonic, if (m1, . . . ,mk) ⊆
(µ1 . . . ,µk) implies ϕ(m1, . . . ,mk) ⊆ ϕ(µ1 . . . ,µk) for all mi, µi ∈ M, i = 1, . . . ,k. A
function ϕ : Mk→M, k ≥ 1, is said to be naturally extended, if ϕ(...,⊥, ...) =⊥. It
is easy to see that every naturally extended function is monotonic.

Let ϕ : Mk → M, k ≥ 1, be a naturally extended arithmetical function with
indeterminate values of arguments and

Arg(ϕ) = {(n1, ...,nk) ∈ Nk|ϕ(n1, ...,nk) 6=⊥}.
It is easy to see that every computable, naturally extended arithmetical function with
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indeterminate values of arguments ϕ : Mk→M, k ≥ 1, for which Arg(ϕ) = Nk, is a
strong computable function.

It is also easy to see that every naturally extended arithmetical function with
indeterminate values of arguments ϕ : Mk →M, k ≥ 1, for which the set Arg(ϕ) is
finite, is a strong computable function.

The class of partial recursive functions with indeterminate values of
arguments is defined as follows:

1. Base functions o, s, Ik,i, 1≤ i≤ k, k≥ 1 (which are the natural extensions of
the classical base functions, see [3]) are partial recursive functions with indeterminate
values of arguments, where for all m, m1, . . . ,mk ∈M we have:

o(m) equals 0, if m ∈ N, and equals ⊥ if m =⊥,
s(m) equals m+1, if m ∈ N, and equals ⊥ if m =⊥,
Ik,i(m1, . . . ,mk) equals mi, if m1, . . . ,mk ∈ N, and equals ⊥ otherwise.
2. If h : Mr →M and g1, . . . ,gr : Mk →M,r,k ≥ 1, are partial recursive func-

tions with indeterminate values of arguments, then so is the function ϕ : Mk → M,
defined by the composition, where for all m1, . . . ,mk ∈M we have:

ϕ(m1, . . . ,mk) = h(g1(m1, . . . ,mk), . . . ,gr(m1, . . . ,mk)).

3. Consider two following cases:

3a. If k = 1.
If m ∈M and h : M2→M is a partial recursive function with indeterminate values of
arguments, then so is the function ϕ : M→M defined by primitive recursion, where

ϕ(⊥) =⊥,
ϕ(0) = m,

ϕ(n+1) = h(n,ϕ(n)), where n ∈ N.

3b. If k > 1.
If g : Mk−1 → M and h : Mk+1 → M, k ≥ 2, are partial recursive functions with in-
determinate values of arguments, then so is the function ϕ : Mk → M defined by
primitive recursion, where for all m1, . . . ,mk−1 ∈M we have:

ϕ(m1, . . . ,mk−1,⊥) =⊥,
ϕ(m1, . . . ,mk−1,0) = g(m1, . . . ,mk−1),

ϕ(m1, . . . ,mk−1,n+1) = h(m1, . . . ,mk−1,n,ϕ(m1, . . . ,mk−1,n)), where n ∈ N.

4. If g : Mk+1 → M, k ≥ 1, is partial recursive function with indeterminate
values of arguments, then so is the function ϕ : Mk → M defined by minimization,
where for all m1, . . . ,mk ∈M we have:

ϕ(m1, . . . ,mk) =


n ∈ N, if g(m1, . . . ,mk,n) = 0 and for all

n′ ∈ N,n′ < n,g(m1, . . . ,mk,n′) 6= 0
and g(m1, . . . ,mk,n′) 6=⊥,

⊥, otherwise.

T h e o r e m 1 . The class of partial recursive functions with indeterminate
values of arguments and the class of computable, naturally extended arithmetical
functions with indeterminate values of arguments are the same.
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P r o o f . It is easy to see that every partial recursive function with indetermi-
nate values of arguments is a computable, naturally extended arithmetical function
with indeterminate values of arguments. Let ϕ : Mk → M,k ≥ 1, be a computable,
naturally extended arithmetical function with indeterminate values of arguments.
Let’s show that ϕ is a partial recursive function with indeterminate values of
arguments. Two cases are considered:

Case 1. Arg(ϕ) = /0.
In this case ϕ is a completely undefined function, i.e. ϕ(m1, . . . ,mk) = ⊥ for all
m1, . . . ,mk ∈M, and it is easy to show that ϕ is a partial recursive function.

Case 2. Arg(ϕ) 6= /0.
Let A=Arg(ϕ) and ψ : A→N be the arithmetical function (in the classical sense, see
[3]), such that if (n1, . . . ,nk) ∈ A, then ψ(n1, . . . ,nk) = ϕ(n1, . . . ,nk). It is easy to see
that ψ is a computable function, i.e. ψ is a partial recursive function (in the classical
sense [3]). Therefore, one can obtain ψ by using classical base functions and classical
operations of composition, primitive recursion and minimization. Therefore, one can
obtain ϕ (the same way), by using naturally extended classical base functions and
operations of composition, primitive recursion and minimization from the definition
of partial recursive function with indeterminate values of arguments. �

The partial recursive functions with indeterminate values of arguments, which
are obtained by using only two kinds of operations: composition and primitive
recursion will be called primitive recursive functions with indeterminate values of ar-
guments. It is easy to see that such functions will be strong computable. It is obvious
that there exists a strong computable, partial recursive function with indeterminate
values of arguments, which is not primitive recursive, for example the Ackerman
function A (see [3]), for which A(⊥) =⊥.

T h e o r e m 2 . Every naturally extended arithmetical function with inde-
terminate values of arguments ϕ : Mk→M,k≥ 1, for which Arg(ϕ) is a finite set, is
a primitive recursive function with indeterminate values of arguments.

P r o o f . The same cases are considered:

Case 1. Arg(ϕ) = /0.
In this case ϕ is completely undefined function, i.e. ϕ(m1, . . . ,mk) = ⊥ for all
m1, . . . ,mk ∈ M. Let’s show that ϕ is a primitive recursive function. It is easy to
see that for all m1, . . . ,mk ∈M we have ϕ(m1, . . . ,mk) = ω(Ik,1(m1, . . . ,mk)), where
for all m ∈ M,ω(m) = ⊥ and the primitive recursiveness of the function ω follows
from the equalities:

ω(⊥) =⊥,
ω(0) =⊥,
ω(n+1) = I2,1(n,ω(n)), where n ∈ N.

Case 2. Arg(ϕ) 6= /0.
Let Arg(ϕ) =

{
(n11, . . . ,n1k), . . . ,(nv1, . . . ,nvk)

}
, where ni j ∈ N, i = 1, . . . ,v, v ≥ 1,

j = 1, . . . ,k, k ≥ 1, and ϕ(ni1, . . . ,nik) = ri, where ri ∈ N, i = 1, . . . ,v.
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It is easy to see that
ϕ(x1, . . . ,xk) = g

(
(r1 +1)sg′

(
|x1−n11|+ . . .+ |xk−n1k|

)
+ . . .+

(rv +1)sg′
(
|x1−nv1|+ . . .+ |xk−nvk|

))
,

where

sg′(x) =


⊥, if x =⊥,
1, if x 6=⊥ and x = 0,
0, if x 6=⊥ and x > 0.

g(x) =
{

⊥, if x =⊥ or x = 0,
x−1, if x 6=⊥ and x > 0.

Let’s show the primitive recursiveness of the function g.
Note that such a property for the other functions in the expression of ϕ may

be shown in the same way as their classical analogs are done. The only difference
is the following: the natural extensions of the classical base functions and operations
of composition and primitive recursion from the definition of a primitive recursive
function with indeterminate values of arguments must be used. Observe that

g(x) = h(sg′(x)) ·minus1(x),

where

minus1(x) =


⊥, if x =⊥,
0, if x 6=⊥ and x = 0,

x−1, if x 6=⊥ and x > 0;

h(x) =


⊥, if x =⊥,
1, if x 6=⊥ and x = 0,
⊥, if x 6=⊥ and x > 0.

It is easy to prove that the functions minus1 and h are primitive recursive
functions. �

λ -Definability of Arithmetical Functions with Indeterminate Values of
Arguments. Let us state some definitions and known results from [5]. Fix a
countable set of variables V and define the set of terms Λ.

1. If x ∈V, then x ∈ Λ;
2. if t1, t2 ∈ Λ, then (t1t2) ∈ Λ;
3. if x ∈V and t ∈ Λ , then (λxt) ∈ Λ.

We will use the abridged notation for the terms: the term (. . .(t1t2) . . . , tk),
where ti ∈ Λ, i = 1, . . . ,k, k > 1, is denoted by t1t2 . . . tk, and the term
(λx1(λx2(. . .(λxnt) . . .), where x j ∈ V, t ∈ Λ, j = 1, . . . ,n, n > 0, is denoted by
λx1x2 . . .xn.t.

The notion of a free and bound entry of a variable in a term and the notion
of a free and bound variable of a term are introduced in the traditional way. A term
having no free variables is said to be closed.

Terms t1 and t2 are said to be congruent (which is denoted by t1 ≡ t2), if one
of them can be obtained from the other one by renaming of the bound variables, the
congruent terms are considered identical.
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A substitution of a term τ in a free entries of variable x of a term t is said to be
admissible and is denoted by t[x := τ], if all the free entries of variables of the term
τ remain free after the substitution. We will consider only admissible substitutions.

Let us remind the notion of the β -reduction:

β =
{(

(λx.t)τ, t[x := τ]
)
| t,τ ∈ Λ,x ∈V

}
.

A one-step β -reduction (→β ),β -reduction (→→β ), and β -equality (=β ) are
defined in the standard way.

We remind that the term (λx.t)τ is referred to as β -redex. A term not con-
taining β -redexes is referred to as β -normal form (further, simply normal form). The
set of all normal forms is denoted by NF. A term t is said to have a normal form, if
there exists a term t ′ ∈NF such that t =β t ′. A term of the form λx1x2 . . .xn.xt1t2 . . . tk,
where x,xi ∈V, t j ∈ Λ, i = 1, . . . ,n, n≥ 0, j = 1, . . . ,k, k ≥ 0, is referred to us a head
normal form. The set of all head normal forms is denoted by HNF. A term t is said to
have a head normal form, if there exists a term t ′ ∈HNF such that t =β t ′. It is known
that NF ⊂ HNF, but HNF 6⊂ NF.

We will extensively use the corollary from the CR-theorem (Church-Rosser),
which says that for any term t ∈ Λ, the following two assertions are valid:

1. t =β t ′, t ′ ∈ NF ⇒ t→→β t ′;
2. t =β t ′, t =β t ′′, t ′, t ′′ ∈ NF ⇒ t ′ ≡ t ′′.
Recall the following statement: If t =β t ′ and t ′ ∈NF, then t→→β t ′ and→→β

is the left β -reduction (i.e. the β -reduction, where, each time, the leftmost β -redex
is taken). We will also use the following statement: If a term t ∈ Λ does not have a
head normal form, then the same holds for the term tτ for any τ ∈ Λ.

We introduce the following notation for some terms to be used below:
I≡ λx.x, T≡ λxy.x, F≡ λxy.y, Ω ≡ (λx.xx)(λx.xx), if t1 then t2 else

t3 ≡ t1t2t3, Zero≡ λx.xT, 〈⊥〉 ≡ Ω,〈0〉 ≡ I, 〈n + 1〉 ≡ λx.xF〈n〉, where x,y ∈ V,
t1, t2, t3 ∈ Λ, n ∈ N.

It is easy to see that: the term Ω does not have a head normal form, if T then t2
else t3 =β t2, if F then t2 else t3 =β t3, Zero〈0〉=β T, Zero〈n+1〉=β F, Zero〈⊥〉 does
not have a head normal form, the term 〈n〉 is closed normal form, and if n1 6= n2, then
n1 and n2 are not congruent, 〈n〉 TII=β I, where n,n1,n2 ∈ N.

Let us introduce the notion of λ -definability for the arithmetical functions with
indeterminate values of arguments. A function ϕ : Mk → M, k ≥ 1, is said to be
λ -definable, if there exists a term Φ ∈ Λ, such that for all m1, . . . ,mk ∈M we have:

Φ〈m1〉 . . .〈mk〉=β 〈ϕ(m1, . . . ,mk)〉, if ϕ(m1, . . . ,mk) 6=⊥ and
Φ〈m1〉 . . .〈mk〉 does not have a head normal form, if ϕ(m1, . . . ,mk) =⊥.
In this case Φ is said to be a term, which λ -defines the function ϕ .

T h e o r e m 3 . Every λ -definable arithmetical function with indeterminate
values of arguments is monotonic.

P r o o f . Let ϕ : Mk → M, k ≥ 1, and Φ ∈ Λ λ -defines the function ϕ.
Let (m1, . . . ,mk) ⊆ (µ1, . . . ,µk), where mi,µi ∈ M, i = 1, . . . ,k, let us prove that
ϕ(m1, . . . ,mk) ⊆ ϕ(µ1, . . . ,µk). For ϕ(m1, . . . ,mk) = ⊥, it is clear that
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ϕ(m1, . . . ,mk) ⊆ ϕ(µ1, . . . ,µk). Let ϕ(m1, . . . ,mk) 6= ⊥, then Φ〈m1〉 . . .〈mk〉 =β

〈ϕ(m1, . . . ,mk)〉 and according to point 1 of the Corollary of the CR-theorem
Φ〈m1〉...〈mk〉 →→β 〈ϕ(m1, ...,mk)〉. It is easy to see that, if mi ⊆ µi and mi 6= µi,
then mi = ⊥, i = 1, . . . ,k. Since 〈ϕ(m1, . . . ,mk)〉 ∈ NF, then Φ〈µ1〉 . . .〈µk〉 →→β

〈ϕ(m1, . . . ,mk)〉, and Φ〈µ1〉 . . .〈µk〉 =β 〈ϕ(m1, . . . ,mk)〉, which means that
Φ〈µ1〉 . . .〈µk〉 has normal form. Therefore, ϕ(µ1, ...,µk) 6= ⊥,Φ〈µ1〉...〈µk〉 =β

〈ϕ(µ1, ...,µk)〉,〈ϕ(µ1, ...,µk)〉 ∈ NF. According to the point 2 of the Corollary of
the CR-theorem, 〈ϕ(m1, . . . ,mk)〉 ≡ 〈ϕ(µ1, ...,µk)〉, i.e. ϕ(m1, ...,mk) = ϕ(µ1, ...,µk)
and ϕ(m1, ...,mk)⊆ ϕ(µ1, ...,µk). �

T h e o r e m 4 . Every λ -definable arithmetical function with indeterminate
values of arguments is computable.

P r o o f . Let ϕ : Mk→M, k≥ 1, and Φ ∈Λ λ -defines the function ϕ. Let us
describe an algorithm, which computes the function ϕ for m1, . . . ,mk ∈ M. At first,
the term Φ〈m1〉 . . .〈mk〉 is constructed. If ϕ(m1, . . . ,mk) 6=⊥, then Φ〈m1〉 . . .〈mk〉 has
normal form 〈ϕ(m1, . . . ,mk)〉 and Φ〈m1〉 . . .〈mk〉→→β 〈ϕ(m1, . . . ,mk)〉, then we get
ϕ(m1, . . . ,mk). If ϕ(m1, . . . ,mk) = ⊥, then the term Φ〈m1〉 . . .〈mk〉 does not have
normal form and the left β -reduction for the term Φ〈m1〉 . . .〈mk〉 will be endless,
which corresponds to the endless functioning of the algorithm. �

T h e o r e m 5 . Every computable, naturally extended arithmetical function
with indeterminate values of arguments is λ -definable.

P r o o f . Let ϕ : Mk → M, k ≥ 1, be a computable, naturally extended
arithmetical function with indeterminate values of arguments. We will show that
the function ϕ is λ -definable. Two cases are considered:

Case 1. Arg(ϕ) = /0.
In this case ϕ is the completely undefined function and the term Φ≡ λx1 . . .xk.Ωx1 . . .xk
λ -defines the function ϕ.

Case 2. Arg(ϕ) 6= /0.
Let A=Arg(ϕ). Consider the function ψ : A→N, where ψ(n1, . . . ,nk)=ϕ(n1, . . . ,nk),
if (n1, . . . ,nk) ∈ A. It is obvious that ψ is a computable, arithmetical function in the
classical sense. Therefore, ψ is λ -definable in the classical sense (Kleene’s
theorem, [5]), i.e. there exists a term Ψ such that Ψ〈n1〉 . . .〈nk〉 =β 〈ψ(n1 . . .nk)〉,
when (n1, . . . ,nk) ∈ A, and the term Ψ〈n1〉 . . .〈nk〉 does not have a head normal form
otherwise. Let Φ ≡ λx1 . . .xk.(x1TII) . . .(xkTII)(Ψx1 . . .xk). It is easy to see that the
term Φ λ -defines the function ϕ. �

T h e o r e m 6 . There exist strong computable, monotonic, not naturally
extended arithmetical functions with indeterminate values of arguments, which are
not λ -definable.

P r o o f . Consider function & : M2→M, where for all m1,m2 ∈ M we have

&(m1,m2) =


0, if m1 = 0 or m2 = 0,
1, if m1, m2 6=⊥ and m1,m2 ≥ 1,
⊥, otherwise.

It is easy to see that the function & is a strong computable, monotonic, not
naturally extended arithmetical function with indeterminate values of arguments. Let
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us show that the function & is not λ -definable. Assume, that the function & is
λ -definable and the term Φ λ -defines the function &. Consider the term Φxy, where
x,y are different variables, which are not free in Φ. Since &(0,⊥) = 0, we have
ΦIΩ =β I and by the left β -reduction of the term Φxy we can not get a term t, in
which y is the leftmost free entry of a variable, which is on the left of all β -redexes
of the term t, since in this case the term ΦIΩ will not have a normal form. On the
other hand, since &(⊥,0) = 0, we have ΦΩI=β I and by the left β -reduction of the
term Φxy, we can not get a term t, in which x is the leftmost free entry of a variable,
which is on the left of all β -redexes of the term t, since in this case the term ΦΩI will
not have a normal form. Thus, by the left reduction of the term Φxy we can get the
term I. Therefore, by the left reduction of the term ΦΩΩ we can get the term I too,
and ΦΩΩ =β I. This is a contradiction, since &(⊥,⊥) = ⊥ and the term ΦΩΩ does
not have a normal form. Therefore, the function & is not λ -definable. �

T h e o r e m 7 . There exist strong computable, monotonic, not naturally
extended arithmetical functions with indeterminate values of arguments, which are
λ -definable.

P r o o f . Consider function and : M2→M, where for all m1,m2 ∈M we have

and(m1,m2) =


0, if m1 = 0 or m1 6=⊥,m1 ≥ 1,m2 = 0,
1, if m1, m2 6=⊥ and m1,m2 ≥ 1,
⊥, otherwise.

It is easy to see that the function and is a strong computable, monotonic,
not naturally extended arithmetical function with indeterminate values of arguments,
and the term Φ λ -defines this function, Φ ≡ λxy. if Zero x then 〈0〉 else (if Zero y
then 〈0〉 else 〈1〉). �

The Theorem 8 follows from the Theorems 5, 6, 7.
T h e o r e m 8 . The class of computable, naturally extended arithmetical

functions with indeterminate values of arguments is a proper subclass of the class of
λ -definable arithmetical functions with indeterminate values of arguments, which is
a proper subclass of the class of computable, monotonic arithmetical functions with
indeterminate values of arguments.

The δ -Redex Problem for the Strong Computable, Monotonic Arithmeti-
cal Functions with Indeterminate Values of Arguments. Let ϕ : Mk→M, k ≥ 1,
be a strong computable, monotonic arithmetical function with indeterminate values
of arguments. An expression ϕ(υ1, . . . ,υk), where υi is from M, or is a variable,
i = 1, . . . ,k, is called a δ -redex, if the value of the expression ϕ(υ1, . . . ,υk) is the
same for all values of variables.

The δ -redex problem for the function ϕ is formulated as follow: is there an
algorithm, which for any expression ϕ(υ1, . . . ,υk), where υi is either from M, or is a
variable, i = 1, . . . ,k, determines wether this expression is a δ -redex or not.

T h e o r e m 9 . There exist strong computable, naturally extended arithmeti-
cal functions with indeterminate values of arguments, for which the δ -redex problem
is unsolvable.
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P r o o f . Let T0,T1, . . . ,Tn, . . . be an effective numeration of Turing machines
(see [5]), n≥ 0. Let define the function f : M2→M.

f (x,y) =


⊥, if x =⊥ or y =⊥,
⊥, if x 6=⊥, y 6=⊥ and Turing machine Tx

does not halt on 0 after ≤ y steps,
1, if x 6=⊥, y 6=⊥, Turing machine Tx

halts on 0 after ≤ y steps.

It is easy to see that f is a strong computable, naturally extended arithmeti-
cal function with indeterminate values of arguments. Now we will prove that the
δ -redex problem is unsolvable for the function f . Let n ∈ N. If the Turing machine
Tn does not hold on 0, then f (n,y) = ⊥ for all values of the variable y, i.e. f (n,y)
is δ -redex. If the Turing machine Tn holds on 0, then f (n,r) = 1 for some r ∈ N,
and f (n,⊥) =⊥, which means that f (n,y) is not a δ -redex. Thus, the assumption of
the solvability of the δ -redex problem for function f will imply the solvability of the
halting problem for Turing machines. �

C o r o l l a r y 1. (Theorem 9). There exist strong computable, monotonic
arithmetical functions with indeterminate values of arguments, for which the δ -redex
problem is unsolvable.

C o r o l l a r y 2. (Theorem 9). There exist strong computable, λ -definable
arithmetical functions with indeterminate values of arguments, for which the δ -redex
problem is unsolvable.
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