PROCEEDINGS OF THE YEREVAN STATE UNIVERSITY

PAIR OF LINES AND MAXIMAL PROBABILITY

A. G. GASPARYAN *
Chair of Probability Theory and Mathematical Statistics YSU, Armenia

In this paper we consider two independent and identically distributed lines, which intersect a planar convex domain \mathbf{D}. We evaluate the probability $P_{\mathbf{D}}$, for the lines to intersect inside \mathbf{D}.

Translation invariant measures generating random lines is obtained, under which $P_{\mathbf{D}}$ achieves its maximum for a disc and a rectangle. It is also shown that for every p from the interval $[0,1 / 2]$ and for every square there are measures generating random lines such that $P_{\mathbf{D}}=p$.

MSC2010: 60D05; 52A22; 53C65.
Keywords: random line, convex domain, translation invariant measure.
Introduction. Consider a pair of random lines generated by a translation invariant measure, which intersect planar convex domain \mathbf{D}. The probability $P_{\mathbf{D}}$ that intersection of two lines belongs \mathbf{D} depends on the measure generating random lines. The explicit form of the mentioned probability for the Euclidian measure is given in [1] for every \mathbf{D}. We are interested in maximizing probability $P_{\mathbf{D}}$.

Let G be the space of all lines g in the Euclidean plane \mathbb{R}^{2}, and let (p, φ) be the polar coordinates of the foot of the perpendicular to g from the origin O. Let μ be a translation invariant measure on the space G. It is well known that the element of translation invariant measure up to a constant factor has the following form (see [2]):

$$
\mu(d g)=d p m(d \varphi),
$$

where $d p$ is the one-dimensional Lebesgue measure and m is a finite measure on S^{1} (S^{1} is the circle of radius 1 centered at the origin).

For each bounded convex domain \mathbf{D}, denote the set of lines that intersect \mathbf{D} by

$$
[\mathbf{D}]=\{g \in G, g \cap \mathbf{D} \neq \emptyset\} .
$$

Consider two independent and identically distributed lines g_{1} and g_{2} meeting \mathbf{D}. Denote by A the set of all pairs $\left(g_{1}, g_{2}\right)$ intersecting inside \mathbf{D} :

$$
A=\left\{\left(g_{1}, g_{2}\right) \in[\mathbf{D}] \times[\mathbf{D}]: g_{1} \cap g_{2} \in \mathbf{D}\right\}
$$

[^0]We assume that the lines are distributed by translation invariant measure μ. Let $P_{\mathbf{D}}=P_{\mathbf{D}}(A)$ is the probability of A, defined by the following way:

$$
\begin{equation*}
P_{\mathbf{D}}(A)=(\mu \times \mu)(A) / \mu^{2}([\mathbf{D}]) \tag{1}
\end{equation*}
$$

Calculation of $(\mu \times \mu)(A)$ and $\mu([\mathbf{D}])$. Let calculate the translation invariant measure of $[\mathbf{D}]$:

$$
\begin{equation*}
\mu([\mathbf{D}])=\int_{[\mathbf{D}]} \mu(d g)=\int_{0}^{2 \pi} m(d \varphi) \int_{0}^{p(\varphi)} d p=\int_{0}^{2 \pi} p(\varphi) m(d \varphi), \tag{2}
\end{equation*}
$$

here $p(\varphi)$ is the support function of \mathbf{D} (for the definition of support function see [1]).
In order to obtain $(\mu \times \mu)(A)$ the following integral is calculated:

$$
(\mu \times \mu)(A)=\int_{A} \mu\left(d g_{1}\right) \mu\left(d g_{2}\right)=\int_{0}^{2 \pi} \int_{0}^{p\left(\varphi_{1}\right)} d p_{1} m\left(d \varphi_{1}\right) \int_{\left[\chi\left(p_{1}, \varphi_{1}\right)\right]} d p_{2} m\left(d \varphi_{2}\right)
$$

where $\chi\left(p_{1}, \varphi_{1}\right)=g_{1} \cap \mathbf{D}$ (below by $\chi\left(p_{1}, \varphi_{1}\right)$ we denote both a chord and its length). If a line with direction φ_{2} intersects $\chi\left(p_{1}, \varphi_{1}\right)$, its p_{2} coordinate should be from the projection of $\chi\left(p_{1}, \varphi_{1}\right)$ on direction φ_{2}. The length of the projection is $\chi\left(p_{1}, \varphi_{1}\right)$. $\left|\sin \left(\varphi_{1}-\varphi_{2}\right)\right|$. Hence we have the general form for $(\mu \times \mu)(A):$

$$
\begin{gather*}
(\mu \times \mu)(A)=\int_{0}^{2 \pi} \int_{0}^{p\left(\varphi_{1}\right)} d p_{1} m\left(d \varphi_{1}\right) \int_{0}^{\pi} \chi\left(p_{1}, \varphi_{1}\right)\left|\sin \left(\varphi_{1}-\varphi_{2}\right)\right| m\left(d \varphi_{2}\right)= \\
=\int_{0}^{2 \pi} m\left(d \varphi_{1}\right) \int_{0}^{p\left(\varphi_{1}\right)} \chi\left(p_{1}, \varphi_{1}\right) d p_{1} \int_{0}^{\pi}\left|\sin \left(\varphi_{1}-\varphi_{2}\right)\right| m\left(d \varphi_{2}\right) \tag{3}
\end{gather*}
$$

The Case of Disk.
When \mathbf{D} is a disc of radius R, we can take the origin O as the center of the disc. In this case we have $p\left(\varphi_{1}\right)=R$ for every direction φ_{1}, hence we can easily calculate (2):

$$
\begin{equation*}
\mu([\mathbf{D}])=\operatorname{Rm}\left(S^{1}\right) . \tag{4}
\end{equation*}
$$

Furthermore, in the disc case $\chi\left(p_{1}, \varphi_{1}\right)$ does not depend on φ_{1} and $\chi\left(p_{1}, \varphi_{1}\right)=2 \sqrt{R^{2}-p_{1}^{2}}$. It is easy to calculate, that

$$
\begin{equation*}
\int_{0}^{R} \sqrt{R^{2}-p_{1}^{2}} d p_{1}=\frac{\pi R^{2}}{2} \tag{5}
\end{equation*}
$$

Thus, substituting (5) in (3), we obtain:

$$
\begin{equation*}
(\mu \times \mu)(A)=\frac{\pi R^{2}}{2} \int_{0}^{2 \pi} m\left(d \varphi_{1}\right) \int_{0}^{\pi}\left|\sin \left(\varphi_{1}-\varphi_{2}\right)\right| m\left(d \varphi_{2}\right) . \tag{6}
\end{equation*}
$$

Using (4) and (6), from (1) we obtain the following expression for $P_{\mathbf{D}}(A)$, when \mathbf{D} is a disc of radius R :

$$
\begin{aligned}
P_{\mathbf{D}}(A)= & \frac{1}{R^{2} m^{2}\left(S^{1}\right)} \cdot \frac{\pi R^{2}}{2} \int_{0}^{2 \pi} m\left(d \varphi_{1}\right) \int_{0}^{\pi}\left|\sin \left(\varphi_{1}-\varphi_{2}\right)\right| m\left(d \varphi_{2}\right)= \\
& =\frac{\pi}{m^{2}\left(S^{1}\right)} \int_{0}^{\pi} m\left(d \varphi_{1}\right) \int_{0}^{\pi}\left|\sin \left(\varphi_{1}-\varphi_{2}\right)\right| m\left(d \varphi_{2}\right) .
\end{aligned}
$$

We can estimate integrals in the expression of $P_{\mathbf{D}}(A)$ by the constant factor $\frac{m^{2}\left(S^{1}\right)}{4} \cdot \frac{2}{\pi}$ (see [2]), hence we obtain:

$$
P_{\mathbf{D}}(A) \leqslant \frac{\pi}{m^{2}\left(S^{1}\right)} \cdot \frac{m^{2}\left(S^{1}\right)}{2 \pi}=\frac{1}{2}
$$

It is known, that for the isotropic measure $\mu=d p d \varphi$, the probability $P_{\mathbf{D}}(A)=\frac{1}{2}$, hence, for the Euclidian invariant measure the probability for two random lines meeting \mathbf{D} intersect inside \mathbf{D} achieves its maximum.

The same result is also shown in [3].
The Case of Rectangle.
Suppose that \mathbf{D} is a rectangle with sides a and $b(a \leqslant b)$ and m is a measure on S^{1} concentrated only at two directions, perpendicular to the directions of rectangle sides. Denote these directions by u_{1} perpendicular to b and u_{2} perpendicular to a. We can take the origin as the intersection point of the diagonals of the rectangle. Let us calculate $P_{\mathbf{D}}(A)$ in the mentioned case. From (2) we obtain:

$$
\begin{equation*}
\mu([\mathbf{D}])=\frac{a}{2}\left(m\left(u_{1}\right)+m\left(u_{1}+\pi\right)\right)+\frac{b}{2}\left(m\left(u_{2}\right)+m\left(u_{2}+\pi\right)\right)=a m\left(u_{1}\right)+b m\left(u_{2}\right) . \tag{7}
\end{equation*}
$$

In order to calculate $(\boldsymbol{\mu} \times \boldsymbol{\mu})(A)$ in this case, note that

$$
\begin{equation*}
\int_{0}^{\pi}\left|\sin \left(\varphi_{1}-\varphi_{2}\right)\right| m\left(d \varphi_{2}\right)=\left|\sin \left(\varphi_{1}-u_{1}\right)\right| m\left(u_{1}\right)+\left|\sin \left(\varphi_{1}-u_{2}\right)\right| m\left(u_{2}\right) \tag{8}
\end{equation*}
$$

It is easy to see, that $p\left(u_{1}\right)=p\left(u_{1}+\pi\right)=\frac{a}{2}$ and $p\left(u_{2}\right)=p\left(u_{2}+\pi\right)=\frac{b}{2}$. For the directions u_{1} and u_{2} we have $\chi\left(p_{1}, u_{1}\right)=b$ and $\chi\left(p_{1}, u_{2}\right)=a$ respectively. Therefore, substituting (8) in (3), we obtain

$$
\begin{gathered}
(\mu \times \mu)(A)=\left(\left|\sin \left(u_{1}-u_{1}\right)\right| m\left(u_{1}\right)+\left|\sin \left(u_{1}-u_{2}\right)\right| m\left(u_{2}\right)\right) \operatorname{abm}\left(u_{1}\right)+ \\
+\left(\left|\sin \left(u_{2}-u_{1}\right)\right| m\left(u_{1}\right)+\left|\sin \left(u_{2}-u_{2}\right)\right| m\left(u_{2}\right)\right) \operatorname{bam}\left(u_{2}\right) .
\end{gathered}
$$

Since u_{1} and u_{2} are perpendicular, we have $\left|\sin \left(u_{1}-u_{2}\right)\right|=1$. Thus we have

$$
\begin{equation*}
(\mu \times \mu)(A)=2 a b m\left(u_{1}\right) m\left(u_{2}\right) \tag{9}
\end{equation*}
$$

Substituting (7) and (9) in (1), we obtain

$$
\begin{equation*}
P_{\mathbf{D}}(A)=\frac{2 a b m\left(u_{1}\right) m\left(u_{2}\right)}{\left(a m\left(u_{1}\right)+b m\left(u_{2}\right)\right)^{2}} \tag{10}
\end{equation*}
$$

It is easy to check, that if $m\left(u_{1}\right)=\frac{b}{a} m\left(u_{2}\right)$, then $P_{\mathbf{D}}(A)=\frac{1}{2}$.
It is proved in [3], that $P_{\mathbf{D}}(A) \leq \frac{1}{2}$ for every translation invariant measure μ and every bounded convex body in the plane. Thus, we describe a measure for which $P_{\mathbf{D}}(A)$ achieves its maximum for the rectangle \mathbf{D}.

If \mathbf{D} is a square with side a, then from (10) we have

$$
\begin{equation*}
P_{\mathbf{D}}(A)=\frac{2 m\left(u_{1}\right) m\left(u_{2}\right)}{\left(m\left(u_{1}\right)+m\left(u_{2}\right)\right)^{2}} \tag{11}
\end{equation*}
$$

After simple transformations of (11) we obtain the following equation:

$$
\begin{equation*}
P_{\mathbf{D}}(A)\left(m^{2}\left(u_{1}\right)+m^{2}\left(u_{2}\right)\right)=2\left(1-P_{\mathbf{D}}(A)\right) m\left(u_{1}\right) m\left(u_{2}\right) \tag{12}
\end{equation*}
$$

Denoting $q=\frac{m\left(u_{2}\right)}{m\left(u_{1}\right)}$, we get:

$$
\begin{equation*}
P_{\mathbf{D}}(A) q^{2}+2 q\left(P_{\mathbf{D}}(A)-1\right)+P_{\mathbf{D}}(A)=0 \tag{13}
\end{equation*}
$$

It is easy to check, that for every $p \leqslant \frac{1}{2}$ Eq. 13 has solutions $q=\frac{1-p \pm \sqrt{1-2 p}}{p}$, therefore, there are $m\left(u_{1}\right)$ and $m\left(u_{2}\right)$ satisfying (11). Thus, for every probability p not greater $1 / 2$ and for every square we construct a measure generating random lines such that $P_{\mathbf{D}}(A)=p$.

Received 11.05.2015

REFERENCES

1. Santalo L.A. Integral Geometry and Geometric Probability. Reading(MA): AddisionWesley, 2004.
2. Ambartzumian R.V. Factorization Calculus and Geometric Probability. Cambridge University Press, 1990.
3. Schneider R. Random Hyperplanes Meeting a Convex Body. // Z. Wahrscheinlichkeitstheorie Verw. Gebiete, 1982, v. 61, p. 378-387.

[^0]: * E-mail: ara1987-87@mail.ru

