ON AUTOMORPHISMS OF SOME PERIODIC PRODUCTS OF GROUPS

A. L. GEVORGYAN , Sh. A. STEPANYAN **,
Chair of Algebra and Geometry YSU, Armenia

Abstract

It is proved, that if the order of a splitting automorphism of n-periodic product of cyclic groups of order r is a power of some prime, then this automorphism is inner, where $n \geq 1003$ is odd and r divides n. This is a generalization of the analogue result for free periodic groups.

MSC2010: 20F05; 20E36, 20F50, 20D45.
Keywords: n-periodic product of groups, inner automorphism, normal automorphism, free Burnside group.

Introduction. An automorphism φ of a group G is said to be a splitting automorphism of period n, if the relation $(\varphi g)^{n}=1$ holds for every $g \in G$ in the semidirect product $G \rtimes\langle\varphi\rangle$, i.e. $\varphi^{n}=1$ and $g g^{\varphi} g^{\varphi^{2}} \cdots g^{\varphi^{n-1}}=1$ for all $g \in G$. Many authors studied groups with splitting automorphisms. For example, it is true that every finite or solvable group with a nontrivial splitting automorphism of prime period is a nilpotent group (see [1,2]), and a finite group with splitting automorphism of period 4 is solvable (see [3]). It is true as well, that the splitting automorphism of odd period $n \geq 1003$ is an inner automorphism, if its order is a prime power [4].

Obviously, every inner automorphism of a group, in which the identity $x^{n}=1$ holds is a splitting automorphism of period n. However, the converse fails to hold (see Example 1 in [5]). The main result of this paper is the following theorem.

Theorem 1. Let φ be a splitting automorphism of period n of the n-periodic product $F=\prod_{i \in I}^{n}\left\langle a_{i}\right\rangle$ of cyclic groups $\left\langle a_{i}\right\rangle$ of odd order $r \geq 1003$, where r divides n. Then φ is an inner automorphism, if the order of the automorphism φ is a power of some prime.

Some Auxiliary Lemmas. Let F be an n-periodic product of $m>1$ cyclic groups of an odd order r, where r divides n (for the definition see [6]). In the paper [7] it was constructed a set \mathcal{M}_{n} of normal subgroups of the group F with the following property: if $N \in \mathcal{M}_{n}$, then every two non-commuting elements of the quotient group

[^0]F / N have period n and they generate the whole (infinite) group F / N. In particular, it follows from here that F / N is a non-abelian simple group and its center is trivial.

An automorphism φ of a group G is said to be a normal automorphism, if $H^{\varphi}=H$ for all normal subgroups $H \triangleleft G$. The next two statements were proved in the papers [7] and [5] respectively.

Lemmal. ([7]). Let $F=\prod_{i \in I}^{n}\left\langle a_{i}\right\rangle$ be an n-periodic product of cyclic groups $\left\langle a_{i}\right\rangle$ of an odd order $r \geq 1003$, where r divides n. Then each normal automorphism φ of the group G is inner.
$\boldsymbol{L} \boldsymbol{e} \boldsymbol{m} \boldsymbol{m} \boldsymbol{a}$ 2. ([5], Lemma 4). Let φ be an arbitrary automorphism and N be a normal subgroup of a group G such that the quotient group F / N is a non-abelian simple group. Then, if the subgroups $N, N^{\varphi}, \ldots, N^{\varphi^{k-1}}$ are pairwise distinct and $N^{\varphi^{k}}=N$, then the quotient group $G / \bigcap_{i=1}^{k} N^{\varphi^{i}}$ is decomposed into the direct product of normal subgroups $N_{j} / \bigcap_{i=1}^{k} N^{\varphi^{i}}, j=1,2, \ldots, k$, where $N_{j}=\bigcap_{\substack{i=1 \\ i \neq j}}^{k} N^{\varphi^{i}}$, and every quotient group $N_{j} / \bigcap_{i=1}^{k} N^{\varphi^{i}}$ is isomorphic to the group G / N.

The analogue of the next lemma for the free periodic groups of period n is proved in [5].
$\boldsymbol{L} \boldsymbol{e} \boldsymbol{m} \boldsymbol{m} \boldsymbol{a}$ 3. ([5], Lemma 3). If φ is an arbitrary nontrivial splitting automorphism of a period n of the group $F=\prod_{i \in I}^{n}\left\langle a_{i}\right\rangle$, which is an n-periodic product of cyclic groups $\left\langle a_{i}\right\rangle$ of an odd order $r \geq 1003$, where r divides n for an odd $n \geq 1003$, then the stabilizer of every normal subgroup $N \in \mathcal{M}_{n}$ with respect to the action of the cyclic group $\langle\varphi\rangle$ is nontrivial.

Proof. Let the order of a splitting automorphism φ be $r>1$, and let the stabilizer of some subgroup $N \in \mathcal{M}_{n}$ with respect to the action of the cyclic group $\langle\varphi\rangle$ be nontrivial. We will show that the last assumption leads to a contradiction.

Consider the normal subgroup $K=\bigcap_{i=1}^{r} N^{\varphi^{i}}$. By Lemma 2 , the quotient group F / K is decomposed into the direct product of non-abelian simple subgroups $N_{1} / K, \ldots, N_{r} / K$, where $N_{j}=\underset{\substack{i=1 \\ i \neq j}}{r} N^{\varphi^{i}}, j=1,2, \ldots, r$. It is easy to check that $N_{j}^{\varphi^{t}}=N_{s}$, where $t+j \equiv s(\bmod r)$.

By the same Lemma, the quotient group N_{r} / K is isomorphic to the group F / N, where $N \in \mathcal{M}_{n}$. Therefore, there exists an element $x \in F$ such that $x \in N_{r}=\bigcap_{i=1}^{r-1} N^{\varphi^{i}}$, $x \notin K=\bigcap_{i=1}^{r} N^{\varphi^{i}}=N_{r} \cap N$ and $x K$ has order n in the group N_{r} / K. Since $x \notin K$, then $x \notin N$. Furthermore, by the condition $x \in N_{r} \backslash K$, we have the relations $x^{\varphi^{t}} \in N_{t}$ and $x^{\varphi^{t}} \notin K, t=1,2, \ldots, r$. By the conditions of Theorem, we have

$$
\begin{equation*}
x \cdot x^{\varphi} \cdot x^{\varphi^{2}} \cdot \ldots \cdot x^{\varphi^{n-1}}=1 \tag{1}
\end{equation*}
$$

Since $\varphi^{r}=1$, we get

$$
\begin{equation*}
x \cdot x^{\varphi} \cdot x^{\varphi^{2}} \cdot \ldots \cdot x^{\varphi^{n-1}}=\left(x \cdot x^{\varphi} \cdot x^{\varphi^{2}} \cdot \ldots \cdot x^{\varphi^{r-1}}\right)^{\frac{n}{r}} . \tag{2}
\end{equation*}
$$

Then equation $\left(x K x^{\varphi} K x^{\varphi^{2}} K \ldots x^{\varphi^{r-1}} K\right)^{n / r}=(x K)^{n / r}\left(x^{\varphi} K\right)^{n / r}\left(x^{\varphi^{2}} K\right)^{n / r} \ldots\left(x^{\varphi^{r-1}} K\right)^{n / r}$ holds in quotient group F / K.

Thus, by Eqs. (1), (2),

$$
\begin{equation*}
x \cdot x^{\varphi} \cdot x^{\varphi^{2}} \cdot \ldots \cdot x^{\varphi^{n-1}} K=\left(x^{\frac{n}{r}}\right) K\left(x^{\frac{n}{r}}\right)^{\varphi} K\left(x^{\frac{n}{r}}\right)^{\varphi^{2}} K \ldots\left(x^{\frac{n}{r}}\right)^{\varphi^{r-1}} K=K \tag{3}
\end{equation*}
$$

The multiplier of the product

$$
\left(x^{\frac{n}{r}}\right) K\left(x^{\frac{n}{r}}\right)^{\varphi} K\left(x^{\frac{n}{r}}\right)^{\varphi^{2}} K \ldots\left(x^{\frac{n}{r}}\right)^{\varphi^{r-1}} K
$$

belong to distinct direct components of the group F / K. Thus, by Eq. (3)

$$
\left(x^{\frac{n}{r}}\right) K=K, \quad\left(x^{\frac{n}{r}}\right)^{\varphi} K=K, \quad \ldots, \quad\left(x^{\frac{n}{r}}\right)^{\varphi^{r-1}} K=K .
$$

In particular, we have $\left(x^{\frac{n}{r}}\right) K=K$, where $r>1$. But it is a contradiction since the element $x K$ is of order n in the group N_{r} / K. The contradiction proves the Lemma.

The Proof of the Main Result. By Lemma 1, it suffices to show that for every normal subgroup $N \in \mathcal{M}_{n}$ the equation $N^{\phi}=N$ holds.

We carry out the proof by contradiction. Denote $G=F=\prod_{i \in I}^{n}\left\langle a_{i}\right\rangle$ and suppose that there are normal subgroups $A \in \mathcal{N}_{n}$ that are not ϕ-invariant subgroups, i.e. such that $A^{\phi} \neq A$. On the other hand, by Lemma 3, the stabilizer of every subgroup A of this kind is nontrivial. Let p^{r} be the order of the automorphism ϕ, where p is a prime. Obviously, p^{r} divides n. Since the subgroups of cyclic groups of order p^{r} are totally ordered with respect to inclusion, then among all non- ϕ-invariant subgroups $A \in \mathcal{M}_{n}$ one can choose a subgroup with a minimal stabilizer, which we denote by N. This minimal nontrivial stabilizer, regarded as a subgroup of the group $\langle\phi\rangle$ of order p^{r}, is generated by some automorphism of the form $\phi^{p^{k}}$, where $1<k<r$. Since the subgroup $\left\langle\phi^{p^{k}}\right\rangle$ is minimal, it is contained in the stabilizer of every subgroup $A \in \mathcal{M}_{n}$. Therefore, the automorphism $\phi^{p^{k}}$ stabilizes all subgroups $A \in \mathcal{N}_{n}$. By Lemma 1 , this implies that the automorphism $\phi^{p^{k}}$ is inner.

We have $N^{\phi} \neq N$. Since $N \in \mathcal{M}_{n}$, it follows that the quotient group F / N is a non-abelian simple group. Applying Lemma2 to the group $G=F$, we obtain that the quotient group F / K is decomposed into the direct product of the subgroups N_{0} / K, $N_{1} / K, \ldots, N_{p^{k}-1} / K$, where $K=\bigcap_{i=0}^{p^{k}-1} N^{\phi^{i}}$.

Since the automorphism $\phi^{p^{k}}$ is inner, then $\phi^{p^{k}}=i_{u}$ for some element $u \in F$. Since the automorphism $\phi^{p^{k}}$ is of order p^{r-k}, then the element $u^{p^{r-k}}$ belongs to the center of the group F. By triviality of the center of F it follows $u^{p^{r-k}}=1$.

For the element $u K$ of the quotient group F / K there are uniquely defined elements $u_{0} K, u_{1} K, \ldots, u_{p^{k}-1} K$, belonging to the subgroups $N_{0} / K, N_{1} / K, \ldots, N_{p^{k}-1} / K$ respectively such that

$$
\begin{equation*}
u K=u_{0} K \cdot u_{1} K \cdot \ldots \cdot u_{p^{k}-1} K \tag{4}
\end{equation*}
$$

We can choose element $a \in F$ such that $a K \in N_{0} / K$ and the element $a u_{0} K$ is in order n. By Eq. (4) the relations

$$
\begin{equation*}
u^{s} a u^{-s} K=u_{0}^{s} a u_{0}^{-s} K \tag{5}
\end{equation*}
$$

hold for every integer s.

Since ϕ is a splitting automorphism, it follows that $a a^{\phi} a^{\phi^{2}} \cdots a^{\phi^{n-1}}=1$. Hence

$$
\begin{equation*}
a K \cdot a^{\phi} K \cdot a^{\phi^{2}} K \cdot \ldots \cdot a^{\phi^{n-1}} K=K \tag{6}
\end{equation*}
$$

Represent the Eq. (6) in the form

$$
\begin{equation*}
b K \cdot b^{\phi} K \cdot b^{\phi^{2}} K \cdot \ldots \cdot b^{\phi^{p^{k}-1}} K=K \tag{7}
\end{equation*}
$$

where

$$
\begin{equation*}
b=a \cdot a^{\phi^{p^{k}}} \cdot a^{\phi^{2 p^{k}}} \cdot \ldots \cdot a^{\phi^{\left(n / p^{k}-1\right) p^{k}}} \tag{8}
\end{equation*}
$$

It follows from (7) that all the factors on the left-hand side of the equation are trivial. Since $\phi^{p^{k}}=i_{u}$, one can write Eq. (8) in the form

$$
b=a \cdot u a u^{-1} \cdot u^{2} a u^{-2} \cdot u^{n / p^{k}-1} a u^{-\left(n / p^{k}-1\right)}
$$

Using the relations (5), we obtain the equation

$$
b K=a K \cdot u a u^{-1} K \cdot u^{2} a u^{-2} K \cdot \ldots \cdot u^{n / p^{k}-1} a u^{-\left(n / p^{k}-1\right)} K .
$$

Further, let us use the following identity:

$$
a \cdot u_{0} a u_{0}^{-1} \cdot u_{0}^{2} a u_{0}^{-2} \cdot \ldots \cdot u_{0}^{n / p^{k}-1} a u_{0}^{-\left(n / p^{k}-1\right)}=\left(a u_{0}\right)^{n / p^{k}} \cdot u_{0}^{-n / p^{k}}
$$

Since n divides p^{r}, then n / p^{k} is divisible by p^{r-k}. By the equation $u_{0}^{p^{r-k}} K=K$, we finally obtain $b K=\left(a u_{0}\right)^{n / p^{k}} K$. But we have $b K=K$, then $\left(a u_{0}\right)^{n / p^{k}} K=K$. By the choice of the element a the element $a u_{0} K$ has an order n in the group F / K. Hence we obtain a contradiction.

REFERENCES

1. Kegel O.H. Die Nilpotenz der H_{p}-Gruppen. // Math. Z., 1961, v. 75, p. 373-376.
2. Khukhro E.I. Nilpotency of Solvable Groups Admitting a Splitting Automorphism of Prime Order. // Algebra and Logic, 1980, v. 19, № 1, p. 118-129.
3. Jabara E. Groups Admitting a 4-Splitting Autmomorphism. // Rend. Circ. Mat. Palermo. II Ser., 1996, v. 45, № 1, p. 84-92.
4. Atabekyan V.S. Splitting Automorphisms of Order p^{k} of Free Burnside Groups are Inner. // Mat. Zametki, 2014, v. 95, № 5, p. 651-655 (in Russian); Transl. In Math. Notes, 2014, v. 95, № 5, p. 586-589.
5. Atabekyan V.S. Splitting Automorphisms of Free Burnside Groups. // Mat. Sb., 2013, v. 204, № 2, p. 31-38 (in Russian); Transl. In Sbornik: Mathematics, 2013, v. 204, № 2, p. 182-189.
6. Adian S.I. Periodic Product of Groups. Number Theory, Mathematical Analysis and Their Applications. // Trudy Mat. Inst. Steklov, 1976, v. 142, p. 3-21.
7. Gevorgyan A.L. On Automorphisms of Periodic Products of Groups. // Proceedings of YSU. Physical and Mathematical Sciences, 2012, v. 228, № 2, p. 3-9.

[^0]: * E-mail: amirjan.gevorgian@googlemail.com ${ }^{* *}$ E-mail: shogh.stepanyan@gmail.com

