PROCEEDINGS OF THE YEREVAN STATE UNIVERSITY

Physical and Mathematical Sciences

2015, № 2, p. 7-10

Mathematics

ON AUTOMORPHISMS OF SOME PERIODIC PRODUCTS OF GROUPS

A. L. GEVORGYAN * Sh. A. STEPANYAN **

Chair of Algebra and Geometry YSU, Armenia

It is proved, that if the order of a splitting automorphism of *n*-periodic product of cyclic groups of order *r* is a power of some prime, then this automorphism is inner, where $n \ge 1003$ is odd and *r* divides *n*. This is a generalization of the analogue result for free periodic groups.

MSC2010: 20F05; 20E36, 20F50, 20D45.

Keywords: *n*-periodic product of groups, inner automorphism, normal automorphism, free Burnside group.

Introduction. An automorphism φ of a group *G* is said to be a *splitting automorphism of period n*, if the relation $(\varphi g)^n = 1$ holds for every $g \in G$ in the semidirect product $G \rtimes \langle \varphi \rangle$, i.e. $\varphi^n = 1$ and $g g^{\varphi} g^{\varphi^2} \cdots g^{\varphi^{n-1}} = 1$ for all $g \in G$. Many authors studied groups with splitting automorphisms. For example, it is true that every finite or solvable group with a nontrivial splitting automorphism of prime period is a nilpotent group (see [1,2]), and a finite group with splitting automorphism of odd period 4 is solvable (see [3]). It is true as well, that the splitting automorphism of odd period $n \ge 1003$ is an inner automorphism, if its order is a prime power [4].

Obviously, every inner automorphism of a group, in which the identity $x^n = 1$ holds is a splitting automorphism of period *n*. However, the converse fails to hold (see Example 1 in [5]). The main result of this paper is the following theorem.

Theorem 1. Let φ be a splitting automorphism of period *n* of the *n*-periodic product $F = \prod_{i \in I}^n \langle a_i \rangle$ of cyclic groups $\langle a_i \rangle$ of odd order $r \ge 1003$, where *r* divides *n*. Then φ is an inner automorphism, if the order of the automorphism φ is a power of some prime.

Some Auxiliary Lemmas. Let *F* be an *n*-periodic product of m > 1 cyclic groups of an odd order *r*, where *r* divides *n* (for the definition see [6]). In the paper [7] it was constructed a set \mathcal{M}_n of normal subgroups of the group *F* with the following property: if $N \in \mathcal{M}_n$, then every two non-commuting elements of the quotient group

^{*} E-mail: amirjan.gevorgian@googlemail.com ** E-mail: shogh.stepanyan@gmail.com

F/N have period n and they generate the whole (infinite) group F/N. In particular, it follows from here that F/N is a non-abelian simple group and its center is trivial.

An automorphism φ of a group G is said to be a normal automorphism, if $H^{\varphi} = H$ for all normal subgroups $H \triangleleft G$. The next two statements were proved in the papers [7] and [5] respectively.

Lemma 1. ([7]). Let $F = \prod_{i \in I}^{n} \langle a_i \rangle$ be an *n*-periodic product of cyclic groups $\langle a_i \rangle$ of an odd order $r \ge 1003$, where r divides n. Then each normal automorphism φ of the group G is inner.

Lemma 2. ([5], Lemma 4). Let φ be an arbitrary automorphism and N be a normal subgroup of a group G such that the quotient group F/N is a non-abelian simple group. Then, if the subgroups $N, N^{\varphi}, \ldots, N^{\varphi^{k-1}}$ are pairwise distinct and $N^{\varphi^k} = N$, then the quotient group $G / \bigcap_{i=1}^k N^{\varphi^i}$ is decomposed into the direct product of normal subgroups $N_j / \bigcap_{i=1}^k N^{\varphi^i}$, j = 1, 2, ..., k, where $N_j = \bigcap_{\substack{i=1\\i\neq j}}^k N^{\varphi^i}$, and every quotient

group $N_j / \bigcap_{i=1}^k N^{\varphi^i}$ is isomorphic to the group G/N. The analogue of the next lemma for the free periodic groups of period *n* is proved in [5].

Lemma 3. ([5], Lemma 3). If φ is an arbitrary nontrivial splitting automorphism of a period *n* of the group $F = \prod_{i \in I}^n \langle a_i \rangle$, which is an *n*-periodic product of cyclic groups $\langle a_i \rangle$ of an odd order $r \ge 1003$, where r divides n for an odd $n \ge 1003$, then the stabilizer of every normal subgroup $N \in \mathcal{M}_n$ with respect to the action of the cyclic group $\langle \phi \rangle$ is nontrivial.

P r o o f. Let the order of a splitting automorphism φ be r > 1, and let the stabilizer of some subgroup $N \in \mathcal{M}_n$ with respect to the action of the cyclic group $\langle \phi \rangle$ be nontrivial. We will show that the last assumption leads to a contradiction.

Consider the normal subgroup $K = \bigcap_{i=1}^{r} N^{\varphi^{i}}$. By Lemma 2, the quotient group F/K is decomposed into the direct product of non-abelian simple subgroups $N_1/K, \ldots, N_r/K$, where $N_j = \bigcap_{\substack{i=1\\i\neq j}}^r N^{\varphi^i}$, $j = 1, 2, \ldots, r$. It is easy to check that $N_j^{\varphi^i} = N_s$, where $t + j \equiv s \pmod{r}$.

By the same Lemma, the quotient group N_r/K is isomorphic to the group F/N, where $N \in \mathcal{M}_n$. Therefore, there exists an element $x \in F$ such that $x \in N_r = \bigcap_{i=1}^{r-1} N^{\varphi^i}$, $x \notin K = \bigcap_{i=1}^{r} N^{\varphi^{i}} = N_{r} \cap N$ and xK has order n in the group N_{r}/K . Since $x \notin K$, then $x \notin N$. Furthermore, by the condition $x \in N_r \setminus K$, we have the relations $x^{\varphi^t} \in N_t$ and $x^{\varphi^t} \notin K, t = 1, 2, \dots, r$. By the conditions of Theorem, we have

$$x \cdot x^{\varphi} \cdot x^{\varphi^2} \cdot \ldots \cdot x^{\varphi^{n-1}} = 1.$$
⁽¹⁾

Since $\varphi^r = 1$, we get

$$x \cdot x^{\varphi} \cdot x^{\varphi^2} \cdot \ldots \cdot x^{\varphi^{n-1}} = (x \cdot x^{\varphi} \cdot x^{\varphi^2} \cdot \ldots \cdot x^{\varphi^{r-1}})^{\frac{n}{r}}.$$
 (2)

Then equation $(xKx^{\varphi}Kx^{\varphi^2}K...x^{\varphi^{r-1}}K)^{n/r} = (xK)^{n/r}(x^{\varphi}K)^{n/r}(x^{\varphi^2}K)^{n/r}...(x^{\varphi^{r-1}}K)^{n/r}$ holds in quotient group F/K.

Thus, by Eqs. (1), (2),

$$x \cdot x^{\varphi} \cdot x^{\varphi^2} \cdot \ldots \cdot x^{\varphi^{n-1}} K = (x^{\frac{n}{r}}) K(x^{\frac{n}{r}})^{\varphi} K(x^{\frac{n}{r}})^{\varphi^2} K \ldots (x^{\frac{n}{r}})^{\varphi^{r-1}} K = K.$$
(3)

The multiplier of the product

$$(x^{\frac{n}{r}})K(x^{\frac{n}{r}})^{\varphi}K(x^{\frac{n}{r}})^{\varphi^2}K\dots(x^{\frac{n}{r}})^{\varphi^{r-1}}K$$

belong to distinct direct components of the group F/K. Thus, by Eq. (3)

$$(x^{\frac{n}{r}})K = K, \quad (x^{\frac{n}{r}})^{\varphi}K = K, \quad \dots, \quad (x^{\frac{n}{r}})^{\varphi^{r-1}}K = K.$$

In particular, we have $(x^{\frac{n}{r}})K = K$, where r > 1. But it is a contradiction since the element *xK* is of order *n* in the group N_r/K . The contradiction proves the Lemma. \Box

The Proof of the Main Result. By Lemma 1, it suffices to show that for every normal subgroup $N \in \mathcal{M}_n$ the equation $N^{\phi} = N$ holds.

We carry out the proof by contradiction. Denote $G = F = \prod_{i \in I}^n \langle a_i \rangle$ and suppose that there are normal subgroups $A \in \mathcal{M}_n$ that are not ϕ -invariant subgroups, i.e. such that $A^{\phi} \neq A$. On the other hand, by Lemma 3, the stabilizer of every subgroup Aof this kind is nontrivial. Let p^r be the order of the automorphism ϕ , where p is a prime. Obviously, p^r divides n. Since the subgroups of cyclic groups of order p^r are totally ordered with respect to inclusion, then among all non- ϕ -invariant subgroups $A \in \mathcal{M}_n$ one can choose a subgroup with a minimal stabilizer, which we denote by N. This minimal nontrivial stabilizer, regarded as a subgroup of the group $\langle \phi \rangle$ of order p^r , is generated by some automorphism of the form ϕ^{p^k} , where 1 < k < r. Since the subgroup $\langle \phi^{p^k} \rangle$ is minimal, it is contained in the stabilizer of every subgroup $A \in \mathcal{M}_n$. Therefore, the automorphism ϕ^{p^k} stabilizes all subgroups $A \in \mathcal{M}_n$. By Lemma 1, this implies that the automorphism ϕ^{p^k} is inner.

We have $N^{\phi} \neq N$. Since $N \in \mathcal{M}_n$, it follows that the quotient group F/N is a non-abelian simple group. Applying Lemma 2 to the group G = F, we obtain that the quotient group F/K is decomposed into the direct product of the subgroups N_0/K , N_1/K , ..., N_{p^k-1}/K , where $K = \bigcap_{i=0}^{p^k-1} N^{\phi^i}$.

Since the automorphism ϕ^{p^k} is inner, then $\phi^{p^k} = i_u$ for some element $u \in F$. Since the automorphism ϕ^{p^k} is of order p^{r-k} , then the element $u^{p^{r-k}}$ belongs to the center of the group *F*. By triviality of the center of *F* it follows $u^{p^{r-k}} = 1$.

For the element uK of the quotient group F/K there are uniquely defined elements $u_0K, u_1K, ..., u_{p^k-1}K$, belonging to the subgroups $N_0/K, N_1/K, ..., N_{p^k-1}/K$ respectively such that

$$uK = u_0 K \cdot u_1 K \cdot \ldots \cdot u_{p^k - 1} K. \tag{4}$$

We can choose element $a \in F$ such that $aK \in N_0/K$ and the element au_0K is in order *n*. By Eq. (4) the relations

$$u^{s}au^{-s}K = u_{0}^{s}au_{0}^{-s}K (5)$$

hold for every integer s.

Since ϕ is a splitting automorphism, it follows that $a a^{\phi} a^{\phi^2} \cdots a^{\phi^{n-1}} = 1$. Hence

$$aK \cdot a^{\varphi}K \cdot a^{\varphi^{\varphi}}K \cdot \ldots \cdot a^{\varphi^{\varphi^{\varphi}}}K = K.$$
(6)

Represent the Eq. (6) in the form

$$bK \cdot b^{\phi} K \cdot b^{\phi^2} K \cdot \ldots \cdot b^{\phi^{p^k-1}} K = K,$$
(7)

where

$$b = a \cdot a^{\phi^{p^k}} \cdot a^{\phi^{2p^k}} \cdot \dots \cdot a^{\phi^{(n/p^k - 1)p^k}}.$$
(8)

It follows from (7) that all the factors on the left-hand side of the equation are trivial. Since $\phi^{p^k} = i_u$, one can write Eq. (8) in the form

$$b = a \cdot uau^{-1} \cdot u^2 au^{-2} \cdot u^{n/p^k - 1} au^{-(n/p^k - 1)}.$$

Using the relations (5), we obtain the equation

$$bK = aK \cdot uau^{-1}K \cdot u^2 au^{-2}K \cdot \ldots \cdot u^{n/p^k - 1}au^{-(n/p^k - 1)}K.$$

Further, let us use the following identity:

$$a \cdot u_0 a u_0^{-1} \cdot u_0^2 a u_0^{-2} \cdot \ldots \cdot u_0^{n/p^k - 1} a u_0^{-(n/p^k - 1)} = (a u_0)^{n/p^k} \cdot u_0^{-n/p^k}.$$

Since *n* divides p^r , then n/p^k is divisible by p^{r-k} . By the equation $u_0^{p^{r-k}}K = K$, we finally obtain $bK = (au_0)^{n/p^k}K$. But we have bK = K, then $(au_0)^{n/p^k}K = K$. By the choice of the element *a* the element au_0K has an order *n* in the group F/K. Hence we obtain a contradiction.

Received 30.04.2015

REFERENCES

- 1. Kegel O.H. Die Nilpotenz der H_p-Gruppen. // Math. Z., 1961, v. 75, p. 373–376.
- 2. Khukhro E.I. Nilpotency of Solvable Groups Admitting a Splitting Automorphism of Prime Order. // Algebra and Logic, 1980, v. 19, № 1, p. 118–129.
- 3. Jabara E. Groups Admitting a 4-Splitting Autmomorphism. // Rend. Circ. Mat. Palermo. II Ser., 1996, v. 45, № 1, p. 84–92.
- Atabekyan V.S. Splitting Automorphisms of Order p^k of Free Burnside Groups are Inner. // Mat. Zametki, 2014, v. 95, № 5, p. 651–655 (in Russian); Transl. In Math. Notes, 2014, v. 95, № 5, p. 586–589.
- Atabekyan V.S. Splitting Automorphisms of Free Burnside Groups. // Mat. Sb., 2013, v. 204, № 2, p. 31–38 (in Russian); Transl. In Sbornik: Mathematics, 2013, v. 204, № 2, p. 182–189.
- 6. Adian S.I. Periodic Product of Groups. Number Theory, Mathematical Analysis and Their Applications. // Trudy Mat. Inst. Steklov, 1976, v. 142, p. 3–21.
- 7. Gevorgyan A.L. On Automorphisms of Periodic Products of Groups. // Proceedings of YSU. Physical and Mathematical Sciences, 2012, v. 228, № 2, p. 3–9.