PROCEEDINGS OF THE YEREVAN STATE UNIVERSITY

Physical and Mathematical Sciences

2015, № 2, p. 21-25

Mathematics

A REMARK ON SYMMETRIC β -UNIFORMLY CLOSED ALGEBRA

M. I. KARAKHANYAN *

Chair of Differential Equations YSU, Armenia

The conjugate space of β -uniformly closed, symmetric algebras of functions on topological spaces are investigated. An application of such spaces in algebras of almost periodic functions is given.

MSC2010: 46J10; 46H25.

Keywords: β -uniformly closed algebras, almost periodic function.

Let Ω be a topological space and $C_b(\Omega)$ be closed with respect to the supnorm an algebra of bounded complex-valued continuous functions on Ω . Here it is not supposed that the algebra $C_b(\Omega)$ separates the points of Ω . We denote by $\mathcal{A}_{\infty}(\Omega)$ a symmetric subalgebra of $C_b(\Omega)$ closed with respect to the sup-norm on Ω and containing the unit. By Theorem 2 (see [1], p. 251), we have $\mathcal{A}_{\infty}(\Omega) = C(M_{\mathcal{A}_{\infty}})$, where $M_{\mathcal{A}_{\infty}}$ is the space of maximal ideals of the algebra $\mathcal{A}_{\infty}(\Omega)$. Therefore, to the each point $x \in \Omega$ one can assign an element $\varphi \in M_{\mathcal{A}_{\infty}}$ such that for any function $f \in \mathcal{A}_{\infty}(\Omega)$ the equality $f(x) = \hat{f}(\varphi)$ holds, where $\hat{f} \in C(M_{\mathcal{A}_{\infty}})$ is a Gelfand transformation of f. The arising "contraction" mapping $\Phi : \Omega \to M_{\mathcal{A}_{\infty}}$, defined by the formula $\Phi(x) = \varphi$, where $f(x) = \hat{f}(\varphi)$ for all $f \in \mathcal{A}_{\infty}(\Omega)$ takes Ω into $M_{\mathcal{A}_{\infty}}$ and is continuous, since each neighborhood of $\varphi_0 \in M_{\mathcal{A}_{\infty}}$ with respect to the induced topology of $C(M_{\mathcal{A}_{\infty}})$ contains a neighborhood of the form

$$\begin{split} \left\{ \boldsymbol{\varphi} \in \Phi(\Omega) : \left| \hat{f}_k(\boldsymbol{\varphi}) - \hat{f}_k(\boldsymbol{\varphi}_0) \right| < \boldsymbol{\varepsilon}; \ k = 1, \dots, n \right\} = \\ &= \Phi\left(\left\{ x \in \Omega : \left| f_k(x) - f_k(x_0) \right| < \boldsymbol{\varepsilon}; \ k = 1, \dots, n \right\} \right), \end{split}$$

where $\varphi_0 = \Phi(x_0)$. Thus, $\mathcal{A}_{\infty}(\Omega) = \{f \circ \Phi \in C_b(\Omega) : \hat{f} \in C(M_{\mathcal{A}_{\infty}})\}$. In view of the fact that for each function $f \in \mathcal{A}_{\infty}(\Omega)$, we have $f(x) = \hat{f}(\varphi) = \hat{f}(\Phi(x))$, where $\varphi \in M_{\mathcal{A}_{\infty}}$, the space $\Phi(\Omega)$ is dense in $M_{\mathcal{A}_{\infty}}$. Thus, since $M_{\mathcal{A}_{\infty}}$ is a compact Hausdorff space, we conclude that $M_{\mathcal{A}_{\infty}}$ is a completely regular space and therefore $M_{\mathcal{A}_{\infty}}$ is a compact extension of $\Phi(\Omega)$, that is $\Phi(\Omega)$ is a completely regular space.

Denoted by $\mathcal{B}(\Phi(\Omega))$ the algebra of all bounded complex-valued functions on $\Phi(\Omega)$. Let $\mathcal{B}_0(\Phi(\Omega))$ be the ideal of $\mathcal{B}(\Phi(\Omega))$ consisting of the functions vanishing

^{*} E-mail: mkarakhanyan@yahoo.com

in infinity (i.e. for each $\varepsilon > 0$ there exist a compact $K_{\varepsilon} \subset \Phi(\Omega)$ such that $|f(y)| < \varepsilon$ for $y \in \Phi(\Omega) \setminus K_{\varepsilon}$).

Using $\mathcal{B}_0(\Phi(\Omega))$, we define the family of seminorms $\{P_g\}_{g\in\mathcal{B}_0(\Phi(\Omega))}$ for the algebra $C_b(\Phi(\Omega))$ by $P_g(f) = ||T_g(f)||_{\infty}$, where $T_g: C_b(\Phi(\Omega)) \to C_b(\Phi(\Omega))$ is the multiplicative operator $T_g(f) = fg$. The topology on the algebra $C_b(\Phi(\Omega))$ generated by this family of seminorms is called β -uniform topology. We denoted by $C_b(\Phi(\Omega))$ the closure of the algebra $C_\beta(\Phi(\Omega))$ in β -uniform topology and denote by $\mathcal{A}_\beta(\Omega)$ the closure of $\mathcal{A}_\infty(\Omega)$ with respect to the same topology [2–5]. So, we have $\Phi(\Omega) \subset M_{\mathcal{A}_\infty} \subset M_{C_b(\Phi(\Omega))} = b(\Phi(\Omega))$, where $b(\Phi(\Omega))$ is the Stone–Chekh compactification of the complete regular space $\Phi(\Omega)$.

Theorem 1. Let Ω be a topological space. Then the space of all β -continuous linear functionals of the symmetric β -uniformly closed algebra $\mathcal{A}_{\beta}(\Omega)$ with unit is isomorphic to the space $\mathcal{M}(\Phi(\Omega))$ of all finite complex regular measures on the complete regular space $\Phi(\Omega)$.

P r o o f. The space of maximal ideals $M_{\mathcal{A}_{\infty}}$ of the algebra $\mathcal{A}_{\infty}(\Omega)$ can be represented by $M_{\mathcal{A}_{\infty}} = \Phi(\Omega) \cup F$, where $F \cap \Phi(\Omega) = \emptyset$, *F* is a compact set and the border of $\Phi(\Omega)$ in $M_{\mathcal{A}_{\infty}}$. Since $\Phi(\Omega)$ is dense in $M_{\mathcal{A}_{\infty}}$, any function from the algebra $\mathcal{A}_{\infty}(\Omega)$ has unique norm-preserving extension to a function from the algebra $C(M_{\mathcal{A}_{\infty}})$. If φ is from $\mathcal{A}_{\beta}(\Omega)^*$, then φ is in $C(M_{\mathcal{A}_{\infty}})^*$. By Rise theorem, there exists a finite regular Borel measure μ on $M_{\mathcal{A}_{\infty}}$, representing the functional φ , i.e. $\varphi(f) = \int_{M_{\mathcal{A}_{\infty}}} \hat{f} d\mu$, where \hat{f} is a Gelfand transformation of the function f in $\mathcal{A}_{\infty}(\Omega)$. Since $M_{\mathcal{A}_{\infty}} = \Phi(\Omega) \cup F$ the measure μ can be written by $\mu = \mu_{\Phi(\Omega)} + \mu_F$, where $\mu_{\Phi(\Omega)}$ and μ_F are the restrictions of the measure μ on $\Phi(\Omega)$ and F, respectively and $\mu_F = 0$. Let $\{e_j\}_{j\in J}$ be a bounded approximative unit in $\mathcal{B}_0(\Phi(\Omega)) \cap C(M_{\mathcal{A}_{\infty}})$. Then the sequence $f_j = 1 - e_j$ converges in β -uniform topology to the null function in the algebra $\mathcal{A}_{\beta}(\Omega)$. Hence, the linear functionals $\{f_j \circ \varphi\}_{j\in J}$, where $(f_j \circ \varphi)(f) =$ $= \varphi(f_j f)$ converges to the null functional. Thus, we have

$$0 = \lim_{J} (f_{j} \circ \varphi)(f) = \lim_{J} \left(\int_{\Phi(\Omega)} \widehat{f_{j}f} \, d\mu + \int_{F} \widehat{f_{j}f} \, d\mu \right) = \int_{F} \widehat{f} \, d\mu.$$

Hence, for each function $f \in \mathcal{A}_{\beta}(\Omega)$ we have $\varphi(f) = \int_{\Phi(\Omega)} f d\mu$.

Corollary 1. For any symmetric β -uniformly closed algebra $\mathcal{A}_{\beta}(\Omega)$ with unit there exists a linear multiplicative functional, which is discontinuous in β -uniform topology.

Proof. According to Theorem 1 for $\varphi \in M_{\mathcal{A}_{\infty}} \setminus \Phi(\Omega)$ the corresponding Dirac functional δ_{φ} , where $\delta_{\varphi}(f) = \hat{f}(\varphi)$ is a discontinuous linear multiplicative functional of the algebra $\mathcal{A}_{\beta}(\Omega)$.

We will state the following useful definition. Let $\mathcal{A}_{\infty}(\Omega)$ be a closed with respect to the sup-norm symmetric algebra with unit defined on a topological space Ω . Then the space of the maximal ideals $M_{\mathcal{A}_{\infty}}$ of $\mathcal{A}_{\infty}(\Omega)$ is said to be the \mathcal{A}_{∞} -closure of the topological space Ω .

Proposition. Let $\mathcal{A}_{\infty}(\Omega)$ be a symmetric uniform algebra with unit defined on a topological space Ω . Then the topological space Ω is \mathcal{A}_{∞} -dense in $M_{\mathcal{A}_{\infty}}$.

P roof. As it was stated above, \mathcal{A}_{∞} -closure of a topological space Ω is the closure of the completely regular space $\Phi(\Omega)$ in $M_{\mathcal{A}_{\infty}}$, and since $\mathcal{A}_{\infty}(\Omega)$ is a uniform algebra, the sets Ω and $\Phi(\Omega)$ are topologically isomorphic. On the other hand, since the closure $\Phi(\Omega)$ coincides with the space of maximal ideals $M_{\mathcal{A}_{\infty}}$, we conclude that Ω is \mathcal{A}_{∞} -dense in $M_{\mathcal{A}_{\infty}}$.

Let *G* be a locally compact Abelian group, \hat{G} is be its group of characters and let Γ be a nonempty subset in \hat{G} . We denote by $\mathcal{A}_{\infty}(\Gamma; G)$ a closed with respect to sup-norm symmetric subalgebra $C_b(G)$, with unit, which is generated by the family $\{1, \chi, \bar{\chi}\}_{\chi \in \Gamma}$. As was mentioned above $\mathcal{A}_{\infty}(\Gamma; G) = C\left(M_{\mathcal{A}_{\infty}(\Gamma; G)}\right)$, where $M_{\mathcal{A}_{\infty}(\Gamma; G)}$ is the space of maximal ideals of the algebra $\mathcal{A}_{\infty}(\Gamma; G)$. The arising "contraction" $\Phi_{\Gamma}: G \to M_{\mathcal{A}_{\infty}(\Gamma; G)}$, is defined by the formula $\Phi_{\Gamma}(x) = \varphi$, where $f(x) = \hat{f}(\varphi)$ for all $f \in \mathcal{A}_{\infty}(\Gamma; G)$ and \hat{f} is the Gelfand transformation of the function f. We have $\Phi_{\Gamma}(G) \subset M_{\mathcal{A}_{\infty}(\Gamma; G)}$ and $\Phi_{\Gamma}(G)$ of the compact group $M_{\mathcal{A}_{\infty}(\Gamma; G)}$, which will be denoted by $b_{\Gamma}G$. Such $b_{\Gamma}G$ groups are called Bohr's compactifications of the group G. The group $b_{\hat{G}}G$ will be denoted by bG.

Thus, we have $\mathcal{A}_{\infty}(\Gamma; G) = \{f \circ \Phi_{\Gamma} \in C_b(G) : \hat{f} \in C(M_{\mathcal{A}_{\infty}(\Gamma,G)})\}$. We note, that if the set Γ separates the points of G, then the algebra $\mathcal{A}_{\infty}(\Gamma; G)$ is a symmetric uniform algebra on a group G. In particular, if $\Gamma = \hat{G}$, then Γ separates the points of G and therefore, the mapping Φ_{Γ} is a topological homomorphism between the group G and $\Phi_{\Gamma}(G)$. Besides $\mathcal{A}_{\infty}(\hat{G}; G) = C_{AP}(G)$, where $C_{AP}(G)$ is the uniform algebra of all almost periodical complex-valued continuous functions on a group G [6].

Theorem 2. The space $\mathcal{A}_{\beta}(\Gamma;G)^*$ of all β -continuous linear functionals on a symmetric β -uniformly closed algebras $\mathcal{A}_{\beta}(\Gamma;G)$ with unit is isomorph to the space $\mathcal{M}(\Phi_{\Gamma}(G))$ of all finite complex regular measures on a completely regular space $\Phi_{\Gamma}(G)$. If Γ separates the points of G, then the space $\mathcal{A}_{\beta}(\Gamma;G)^*$ is isomorphic to $\mathcal{M}(G)$.

P r o o f. The first part of the statement follows from Theorem 1. The second part is also immediate, because if Γ separates the points of G, then $\mathcal{A}_{\beta}(\Gamma;G)$ is a β -uniform algebra on G and therefore, the mapping Φ_{Γ} is a topological homomorphism between the groups G and $\Phi_{\Gamma}(G)$. Thus the group G is topologically imbedded into the compact group $b_{\Gamma}G = M_{\mathcal{A}_{\infty}(\Gamma,G)}$, where $b_{\Gamma}G$ is a Borov's compact of G, generated by Γ . Using Theorem 1, we get $\mathcal{A}_{\beta}(\Gamma;G)^* = \mathcal{M}(G)$.

In the case $\Gamma = \hat{G}$ we obtain

Corollary 2. The space of all β -continuous linear functionals on a β -uniform algebra $C_{AP}(G)_{\beta}$, where G is a locally compact Abelian group, is isomorphic to the space $\mathcal{M}(G)$ of all finite complex regular measures on G.

From the Proposition we obtain the following corollary.

Corollary 3. Let $\mathcal{A}_{\infty}(\Gamma; G)$ be a symmetric uniform algebra with unit on a locally compact Abelian group *G*. Then the group *G* is $\mathcal{A}_{\infty}(\Gamma, G)$ -dense in $b_{\Gamma}G$.

We denote by $M_{\mathcal{A}_{\beta}(\Gamma,G)}$ the set of all β -continuous linear multiplicative functionals on $\mathcal{A}_{\beta}(\Gamma,G)$. In the case $\Gamma = \hat{G}$ we denote by $M_{C_{AP}(G)_{\beta}}$ the set of all β -continuous linear multiplicative functionals on the β -uniform algebra $C_{AP}(G)_{\beta}$. From Theorem 2 it follows that $M_{C_{AP}(G)_{\beta}} = G$.

Corollary 4. If G is a locally compact Abelian group, then there exist discontinuous with respect to the β -uniform topology a linear multiplicative functional defined on the symmetric β -uniform algebra $C_{AP}(G)_{\beta}$.

R e m a r k. Let $C_{AP}^{\tau}(G)$ be the space of all τ -almost periodical complexvalued continuous functions on a local compact Hausdorff space Ω , generating by the generalized shift operation τ^{Ω} (see [7,8]). Since the space $C_{AP}^{\tau}(\Omega)$ separates the points of Ω , as mentioned above, $C_{AP}^{\tau}(G)_{\beta}$ is a β -uniform symmetric algebra on Ω . Thus, from Theorem 1 it follows that $C_{AP}^{\tau}(G)_{\beta}^{*} = \mathcal{M}(\Omega)$, since by Riss theorem we have $C_{AP}^{\tau}(G)^{*} = \mathcal{M}(b^{\tau}(\Omega))$, where $b^{\tau}(\Omega)$ is the Bohr's compactification of Ω generating by the generalized shift operation τ^{Ω} . In the case $\Omega = \mathbb{R}$, and $\tau^{\mathbb{R}}$ is a usual shift, then we have $C_{AP}(\mathbb{R})_{\beta}^{*} = \mathcal{M}(\mathbb{R})$.

Let us consider the following examples of highlight the above constructions of Bohr's compacts $b(\mathbb{R})$ on the real line \mathbb{R} .

Let $\{\lambda_j\}_{j=1}^n$ be an arbitrary finite family of nonzero real numbers such that the family $\{1, \lambda_1, \ldots, \lambda_n\}$ is rational independent [9]. We denote by $\mathcal{A}_{\infty}\left(\{\lambda_j\}_{j=1}^n; \mathbb{R}\right)$ the symmetric closed in sup-norm subalgebra of $C_{AP}(\mathbb{R})$ having unit and generated by the family $\{e^{-i\lambda_1 t}, \ldots, e^{-i\lambda_n t}, e^{i\lambda_1 t}, \ldots, e^{i\lambda_n t}\}$. The arising "contraction" mapping $\Phi_n : \mathbb{R} \to M_{\mathcal{A}_{\infty}}(\{\lambda_j\}_{j=1}^n; \mathbb{R})$, which is given by the formula $\Phi_n(t) = (e^{i\lambda_1 t}, \ldots, e^{i\lambda_n t})$ contracts the points $(e^{i\lambda_1 t}, \ldots, e^{i\lambda_n t})$ and $\left(e^{i\lambda_1\left(t+\frac{2\pi k_1}{\lambda_1}\right)}, \ldots, e^{i\lambda_n\left(t+\frac{2\pi k_n}{\lambda_n}\right)}\right)$, where $t \in \mathbb{R}$, $k_j \in \mathbb{Z}, j = 1, \ldots, n$.

Since the space of maximal ideals of the algebra $\mathcal{A}_{\infty}\left(\left\{\lambda_{j}\right\}_{j=1}^{n};\mathbb{R}\right)$ is *n*-dimentionals turns $T^{n} \subset \mathbb{C}^{n}$, then by Proposition we have $\Phi_{n}(\mathbb{R})$ is \mathcal{A}_{∞} -dense in $M_{\mathcal{A}_{\infty}\left(\left\{\lambda_{j}\right\}_{i=1}^{n};\mathbb{R}\right)} = T^{n}$. Thus, for all natural numbers *n* we have

$$\mathcal{A}_{\infty}\left(\left\{\lambda_{j}\right\}_{j=1}^{n};\mathbb{R}\right)^{*}=\mathcal{M}(T^{n}), \text{ and } \mathcal{A}_{\beta}\left(\left\{\lambda_{j}\right\}_{j=1}^{n};\mathbb{R}\right)^{*}=\mathcal{M}(\Phi_{n}(\mathbb{R})).$$

Since $\mathcal{A}_{\infty}\left(\left\{\lambda_{j}\right\}_{j=1}^{n};\mathbb{R}\right) = C(T^{n})$, for all number *n* the uniform algebra $C(T^{n})$ is a subalgebra of the uniform algebra $C_{AP}(\mathbb{R})$. From this it follows that the Bohr's compact $b(\mathbb{R}) = M_{C_{AP}(\mathbb{R})}$ is compact in an infinite-measurable space and exactly, $b(\mathbb{R}) \subset \mathbb{C}^{caard(\mathbb{R})}$, where $caard(\mathbb{R})$ is the continuum.

24

Received 29.12.2014

REFERENCES

- 1. Gelfand I.M., Raikov D.A., Shilov G.E. Commutative Nored Rings. NY: Chelsea, 1964.
- Buck R.C. Bounded Continuous Functions on a Locally Compact Space. // Michigan Math. J., 1958, v. 5, p. 95–104.
- 3. Giles R. A Generalization of the Strict Topology. // Trans. Amer. Math. Soc., 1971, v. 161, p. 467–474.
- 4. Karakhanyan M.I., Khor'kova T.A. A Characteristic Property of the Algebra $C_{\beta}(\Omega)$. // Siberian Math. J., 2009, v. 30, № 1, p. 77–85.
- 5. Grigoryan S.A., Karakhanyan M.I., Khor'kova T.A. On β-Uniform Dirichlet Algebras. // Izv. Nat. Acad. Nauk Armenii. Matem., 2010, v. 45, № 6, p. 17–26.
- 6. Hewtt E., Ross K.A. Abstract Harmonic Analysis. V. 1. Berlin–Heidelberg–New York: Springer, 1970.
- 7. Levitan B.M. Generalized Shift Operations and Some Application. M.: Nauka, 1962 (in Russian).
- 8. Shtern A.I. Representation of Topological Groups in Locally Convex Space. // Russian J. Math. Phys., 2004, v. 11, № 1, p. 81–108.
- 9. Cornfeld I.P., Sinay Ya.G., Fomin S.B. Ergodic Theory. M.: Nauka, 1980.