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M a t h e m a t i c s

ON DIVERGENCE OF FOURIER–WALSH SERIES
OF CONTINUOUS FUNCTION
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We prove that for any perfect set P of positive measure, for which 0 is
a density point, one can construct a function f (x) continuous on [0,1) such that
each measurable and bounded function, which coincides with f (x) on the set P
has diverging Fourier–Walsh series at 0.
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Introduction. Almost everywhere convergence and divergence problems of
Fourier series in different classical orthonormal systems is one of the basic fields in
Harmonic analysis. The following theorem was proved by Menshov [1]:

T h e o r e m . For any perfect set P ⊂ [−π,π] of positive measure, and for
any density point x0 of P one can define a continuous function f (x) on [−π,π],
having the following property: any bounded measurable function g(x), defined on
[−π,π] coinciding with f (x) on P, has Fourier series diverging at x0 with respect to
the trigonometric system.

In this paper we prove the following theorem.
T h e o r e m 1. For any perfect set P⊂ [0,1) of positive measure, for which

0 is a density point, one can define a continuous function f (x) on [0,1) with the fol-
lowing property: any bounded measurable function g(x), defined on [0,1) coinciding
with f (x) on P, has Fourier series diverging at 0 with respect to the Walsh system.

Definition of Walsh System. The Walsh system Φ = {φ(x)}∞
n=1 is defined as

follows (see [2]):

φ0(x) = 1, φn(x) =
k

∏
s=1

rms(x) for n =
k

∑
s=1

2ms , 0≤ m1 < m2 < .. . < ms,

where {rk(x)}∞
k=0 is the Rademacher system:

r0(x) =

{
1, x ∈ [0,1/2),
−1, x ∈ [1/2,1);
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r0(x+1) = r0(x), rk(x) = r0(2kx), k = 1, 2, . . .

Note that the Walsh system is a basis in Lp[0,1), 1 < p < ∞.
Auxiliary Propositions. Let Dn(x) be the Dirichlet kernel of the Walsh

system and Sn(x, f ) be the partial sum of Fourier–Walsh series of a function f (x), i.e.

Dn(x) =
n−1

∑
k=0

φk(x), Sn(x, f ) =
n−1

∑
k=0

ckφk(x), where ck =
∫ 1

0
f (t)φk(t)dt, k = 0,1, . . .

It is known [2] that

|Dn(x)|<
1
x
, x ∈ (0,1), n = 1,2, . . . , (1)

Sn(x, f ) =
∫ 1

0
f (t⊕ x)Dn(t)dt, (2)

where ⊕ is the dyadic addition, and∫ 1

2−k
|Dnk(t)|dt ≥ k

4
, k = 1,2, . . . , (3)

where

n2s =
s−1

∑
i=0

22i+1, n2s−1 =
s−1

∑
i=0

22i, s = 1,2, . . . (3*)

Let P⊂ [0,1) be a perfect set of positive measure and E = [0,1)\P. Let 0 be
a density point of the set P⊂ [0,1), i.e.

∃ lim
h→+0

|E ∩ (−h,h)|
2h

= 0.

We will also use the following lemma, which is a direct consequence of Lemma C
from [1].

L e m m a . There exists a positive function σ(α), α ∈ (0,1) with
lim

α→+0
σ(α) = 0 such that

0≤
∫

E∩[αm,α]

dt
t
≤ σ(α)

∫
α

αm

dt
t
, m = 0,1, . . . , where αm =

α

2m .

Proof of Main Result. We choose a sequence of natural numbers {km}∞

m=0
such that

k0 = 1, km > m2km−1, m = 1,2, . . . , (4)

σ

(
1

2km

)
<

1
(m+1)2 , m = 1,2, . . . (5)

Denote

∆m =

[
1

2km
,

1
2km−1

)
(k−1 = 0), δ

i
m =

[
i

2km
,
i+1
2km

)
, γ

0,i
m =

[
i

2km
,

i
2km

+ lm

)
,

γ
1,i
m =

[
i+1
2km
− lm,

i+1
2km

)
, i = 0, . . . ,2km−1, m = 0,1, . . . , (6)

where lm = 1/(22km+2).
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From (3*) obviously follows, that for all m ≥ 0 the function Dnkm
(x) is

constant on each δ i
m ⊂ ∆m.

Then

[0,1) = δ
0
m∪∆m∪

[
2−km−1 ,1

)
, ∆m =

2km−km−1−1⋃
i=1

δ
i
m, m = 1,2, . . . (7)

We define functions f0(x) and f (x) as follows,

f0(x) =


1
m

signDnkm
(x), if x ∈ ∆m,m = 1,2, . . .

0, otherwise.
(8)

f (x) =



f0
( i

2km

)
, if x ∈ δ i

m \ (γ
0,i
m ∪ γ

1,i
m )⊂ ∆m,

1
lm

(
x− i

2km

)
f0
( i

2km

)
, if x ∈ γ

0,i
m ⊂ ∆m,

− 1
lm
(x− i+1

2km ) f0
( i

2km

)
, if x ∈ γ

1,i
m ⊂ ∆m,

0, if x = 0,

(9)

where m = 0,1, . . .
From (6)–(9) it is easy to notice that f (x) is continuous on [0,1).
Let g(x) be an arbitrary measurable and bounded function defined on [0,1) and

coinciding with f (x) on P. Then let m be a natural number. We put

I(1)m =
∫
δ 0

m

g(t)Dnkm
(t)dt, I(2)m =

∫
∆m

g(t)Dnkm
(t)dt, I(3)m =

∫
[2−km−1 ,1)

g(t)Dnkm
(t)dt. (10)

From (2), (7) and (10) we get

Snkm
(0,g) =

∫ 1

0
g(t)Dnkm

(t)dt = I(1)m + I(2)m + I(3)m . (11)

It follows from (6) and (10) that

|I(1)m | ≤C
∫
δ 0

m

|Dnkm
(t)|dt =C

nkm

2km
≤C, C = sup

x∈[0,1)
g(x). (12)

From (1) and (10) we obtain

|I(3)m | ≤C
∫

[2−km−1 ,1)

|Dnkm
(t)|dt ≤C

∫
[2−km−1 ,1)

1
t

dt =Ckm−1 ln2. (13)

Then
I(2)m =

∫
P∩∆m

g(t)Dnkm
(t)dt +

∫
E∩∆m

g(t)Dnkm
(t)dt.

Obviously
I(2)m = B(1)

m +B(2)
m , (14)

where
B(1)

m =
∫

∆m

f (t)Dnkm
(t)dt, B(2)

m =
∫

E∩∆m

[g(t)− f (t)]Dnkm
(t)dt. (15)



Sargsyan S. A. On Divergence of Fourier–Walsh Series of Continuous Function. 29

From (1), (5), (15) and Lemma we conclude

|B(2)
m | ≤ 2Cσ(2−km−1)

∫
∆m

1
t

dt ≤ 2C
m2 (km− km−1) ln2. (16)

From (8) and (15) we have

B(1)
m =

1
m

∫
∆m

|Dnkm
(t)|dt−

∫
∆m

[ f0(t)− f (t)]Dnkm
(t)dt. (17)

From (1), (3) and (6)–(9) we obtain∫
∆m

| f0(t)− f (t)||Dnkm
(t)|dt < 1,

∫
∆m

|Dnkm
(t)|dt ≥ km

4
− km−1 ln2. (18)

From (11)–(14) and (16)–(18) we get

Snkm
(0,g)>

1
m

(
km

4
− km−1 ln2

)
− 2C

m2 (km− km−1) ln2−Ckm−1 ln2−C−1. (19)

From (4) and (19) it follows that

Snkm
(0,g)→ ∞ when m→ ∞,

which completes the proof of the Theorem.
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