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The problems of contact interaction are observed for an elastic half-plane and 
the infinite plate, which are strengthened, along the line (in the plane) by two 
finite overlays (stringers) with different elastic characteristics and constant small 
thickness. The contact interaction between deformable foundations and overlays is 
realized through a shear layers (in form of glue layers) having different physical–
mechanical properties and geometric configuration. The determination problem of 
unknown contact stresses are reduced to the systems of Fredholm’s integral equations 
of the second kind within the different finite intervals, which in the certain region 
of the change of characteristic parameter typical to the problems, may be solved 
by the method of successive approximations. Possible particular cases are observed 
and the character and behavior of contact stresses are illustrated. 

Keywords: contact, elastic half-plane, infinite plate (sheet), overlay (stringer), 
shear, system of integral equation, operator equation. 

 
In the articles [1, 2], the solutions of problems is reduced to the systems of 

singular integral-differential equations of the second kind with Cauchy’s kernel, 
where its solutions are constructed using apparatus of Chebishev’s orthogonal 
polynomials. Contact problem for the infinite plate with two finite stringers 
through of shear interlayer with one of stringers is observed in the article [3].  

In present paper in contrast to [1, 2], a different approach to solving the 
problems is applied, which allows to reduce the solution of the problems to the 
systems of Fredholm’s integral equations of the second kind. 

The problem for elastic deformable base in the form of half-plane was 
chosen as the main. During the process of problem solving the results for the 
infinite plate are also presented, using the same designations where possible.  

Let an elastic half-plane (with the elasticity modulus E or shear modulus G, 
the Poisson’s ratio v) is strengthened by two finite, small thickness (h1, h2) overlays 
on intervals [–a, a] and [b, c] (b > a) of its boundary at 0y   (in xOy plane), with 
modulus of elasticity E1 and E2, when x[–a, a] and x[b, c] respectively. The 
contact interaction between the half-plane and overlays was realized through shear 
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interlayers (layers of glue) with characteristics Ek, vk, hk.  The problem reduces to 
the determination of contact stresses, when horizontal forces P and Q are applied in 
the points of overlays x a  and x c  respectively, along the Ox axis (see Figure).  

 

 
 

It is supposed that for the overlays (stringers) the model of one measurement 
elastic continuum with confrontation contact along the line is realized, and for the 
interlayers it is the pure shear condition realized, due to which only the tangential 
(shear) contact stresses are acting in contact parts [1–4]. 

Taking into account above mentioned and assumptions from [1–4], the 
equilibrium differential equations for the overlays on the [ , ]a a and [ , ]b c  intervals 
will be written in the following form:  

 2 (1)
1

2
1 1

( ) , ,
d u x x a x a

E hdx


                              (1) 

      2 (1)
1 2

2
2 2

( ) , ,
d u x x b x c

E hdx


                               (2) 

where (1) ( )u x  and (1)
1 ( )u x  are the horizontal displacements of the points of the 

overlays, τ1(x) and τ2(x) are the tangential (shear) contact stresses, acting under 
overlays on the [ , ]a a  and [ , ]b c  intervals correspondingly. 

Now let write horizontal displacements of the boundary points of elastic 
half-plane  u(2)(x,0)  in the following form:  

     (2)
1 2

1 1 1 1,0 ln ln ,
a c

a b

u x C s ds C s ds
A x s A x s

 
 

   
             

      (3) 

where  2 2 22(1 ) 2 (1 ), (1 2 ) / 2 1 ,A E G           C is arbitrary constant. 
Assuming that each differential element of the glue layer is in the condition 

of pure shear [1–4], the following contact conditions are obtained:  
(1) (2)

1( ) ( ,0) ( ) , ,u x u x k x a x a                            (4) 
                                      (1) (2)

1 2( ) ( ,0) ( ), ,u x u x k x b x c                            (5) 
where , / 2(1 ),k k k k kk h G G E v     kG  is the shear modulus of glue material. 

For the elastic infinite plate, which is defined to the conditions                     
of generalized strain state, it is supposed that stringers defined on the surface 
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infinite plate at line 0y   (xOy its average plane), in formulas (1)–(5), 
( ) ( 1,2)j x j   must change substitution into *

1 ( ),jb x  ( 1,2)jh j   it is necessary 

to substitute on cross-sectional areas of stringers *
1 ,j jF b h  and A  on  

* 4 (1 )(3 ) 8 /(3 ),A Ed Gd        d  is the thickness plate, G is the shear 

modulus of material plate, *
1b  is the width stringers on the contact parts, k  on *

*
1

.kk
b

   

Further by virtue of (4) and (5),  Eq.(1) and Eq.(2) can be written in the form: 
2 (1)

2 (1) 2 (2)
1 12 ( ) ( ,0) , ,d u u x u x a x a

dx
                          (6) 

     
2 (1)

2 (1) 2 (2)1
2 1 22 ( ) ,0 , ,d u u x u x b x c

dx
                           (7) 

where we have also the following boundary conditions respectively 
(1) (1)

1 1

0, ,
x a x a

du du P
dx dx E h

 

                                        (8) 

 
(1) (1)
1 1

2 2

0, .
x b x c

du du Q
dx dx E h

 

                                       (9) 

Here 2 2
1 1 1 2 2 21 , 1 .kE h kE h     

For the elastic plate we must change 2
j  on 2 *

1 ( 1,2)j k k j jb G h E F j   . 
Further, the solution of boundary value problem (6) and (8) we obtain in the form 

(1) (1) 2 (2)
0 1( ) ( ) ( , ) ( ,0) , ,

a

a
u x u x G x s u s ds a x a



                  (10) 

where (1)
0 ( )u x  is general solution of the homogenous equation corresponding to    

Eq. (6)  with the boundary conditions (8) and  has the form 
(1) 1
0

1 1 1 1

c h ( )( )
sh 2

P x au x
E h a


 


 , 

and 2 (2)
0 1( ) ( , ) ( ,0)

a

a
u x G x s u s ds



   is a particular solution of Eq.(6) with zero 

boundary conditions  (1) 0,
x a

du dx


   (1) 0,
x a

du dx

  where ( , )G x s  is 

Green’s function [5],  and  
1 1

1 11 1

ch ( )ch ( ), ,1( , )
ch ( )ch ( ), .sh2

x a s a x s
G x s

x a s a x sa
 
  

  
    

 

Function ( , ) ( , )G x s G s x  is continuous function obviously. 
Similarly, the solution of boundary value problem (7), (9) we obtain in the form 

               (1) (1) 2 (2)
1 * 2( ) ( ) ( , ) ( ,0) , ,

c

b

u x u x K x s u s ds b x c                     (11) 

where * ( )u x  is a particular solution of Eq.(7) with zero boundary conditions 
corresponding to (9) and has the form 
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2 (2)
* 2( ) ( , ) ( ,0) ,

c

b
u x K x s u s ds   

where  
2 2

2 22 2

ch ( )ch ( ), ,1( , )
ch ( )ch ( ), ,sh[ ( )]

x c s b x s
K x s

x b s c x sc b
 
  

  
     

 

(1)
* ( )u x  is general solution of the homogenous equation corresponding to  Eq. (7) 

with boundary conditions (9) and has the form  
(1) 2
*

2 2 2 2

ch[( ) ]( ) ,
sh( )

Q x bu x
E h c b


 





 

where, ( , ) ( , )K x s K s x  is a continuous function.  
Now, by virtue of (10) and (11) and according conditions (4) and (5), we 

obtain the following equations: 
(2) 2 (2) (1)

1 1 0( ) ( ,0) ( , ) ( ,0) ( ), ,
a

a

k x u x G x s u s ds u x a x a 


           (12) 

(2) 2 (2) (1)
2 2 *( ) ( ,0) ( , ) ( ,0) ( ), .

c

b
k x u x K x s u s ds u x b x c             (13) 

For future, it should be noted that spectrum of the symmetric second-order 

differential operator 
2

2
12

dD I
dx

   , which definition domain are twice 

continuous differentiating functions satisfying the boundary conditions 

 (1) 0
x a

du dx


  and  (1) 0,
x a

du dx

  are eigenvalues 

2 2
2
1 24n

n
a


     and 

corresponding them eigenfunctions  are ( )cos ,
2

n x a
a

  
  

 where 0,1,2,...n    

Further, it is known [5], that symmetric quite continuous integral operator B:  

( , ) ( ) ,
a

a
B G x s s ds 



   

which acts in the space  L2(–a, a)  is an inverse operator of  D. 
Hence, we have  

2

2 2 2 2
1

( ) 4 ( )( , )cos cos , 0,1,2,...,
2 24

a

a

n s a a n x aG x s ds n
a aa n

 
 

           
       (14) 

 
2

2 2 2 2
2

( ) ( ) ( )( , )cos cos , 0,1,2,...,
( )

c

b

n s b c b n x bK x s ds n
c b c bc b n
 

 
              

     (15) 

where the functions ( )cos
2

n x a
a

  
  

and ( )cos , 0,1,2,...,n x b n
c b
     

form       

full orthogonal systems in the spaces L2(–a, a) and  L2(b, c) accordingly. 
Now by virtue of (3), from (12) and (13) we will obtain the following 

system: 
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   

     

 

1 1 2

2
1

1 2

(1)
0

2 1 2

1 1 1( ) (ln ) (ln )
| | | |

1 1, (ln ) (ln )
| | | |

( ) / , ,

1 1 1(ln ) ( ) (ln ) ( )
| | | |

a c

a b

a a c

a a b

a c

a b

x C s ds C s ds
kA x s x s

G x s C t dt C t dt ds
kA s t s t

u x k a x a

x C s ds C s ds
kA x s x s

  



 



  




 



 
       

 
       

   


   

 

 

  

 

 
2
2

1 2

(1)
*

1 1, (ln ) ( ) (ln ) ( )
| | | |

( ) / , .

c a c

b a b
K x s C t dt C t dt ds

kA s t s t

u x k b x c

  
 


 


 

       
  

  

  (16) 

Further, replacing variables , andx s t  with ax , as  and at  respectively, 
we will obtain 
 

       

2 2

1 1

2 22 1 1 1
1

1 1 1
(1)2 22 1
01

1

2 22 1 1
1

1 1

1 1( ) ln ( ) ( , ) ln ( )
| | | |

( )1 1ln ( ) ( , ) ln ( ) 0,
| | | |

1 1,

1 1ln , ln

ap x p t dt G ax as p t dt ds
x t s t

u axaq t dt G ax as q t dtds
x t s t k

x

aq x p t dt K ax as p t dt
x t s t

 

 

 
 

 
 

 
 

  



 

  
 

   
 

  

 
 

  

  

 

     
   

2

1

2 2 2

1 1 1

12 22
*1

1 2

1 1ln , ln 0,

,

ds

u axaq t dt K ax as q t dtds
x t s t k

x





  

  

 
 

 



   
 

 



  

    (17) 

since according to (14) and (15), we have also the following equalities : 

   
2

1

1

2 2
1 1 2

1 1, , ,G ax as ds K ax as ds
a a



 

   .                           (18) 

Here 2
1 2, , ,a b c

kA a a
      1 2( ) ( ), ( ) ( ).p x ax q x ax    

One can represent the system of integral equations (17) in the following form: 
 

           

           

2

1

2

1

1
2 2

0
1

1
2 2

0 1 2
1

, , , 1 1,

, , , ,

p x H x t p t dt H x t q t dt p x x

q x x t q t dt x t p t dt q x x









 

   





     

      

 

 
   (19) 

where 
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2

1

1
2
1

1

2
2

(1) (1)
0 1 2 1*

0 0
1 1 1 1 2 2 2 2

1 1 1( , ) ln ( , )ln ,
| | | |

1 1 1( , ) ln ( , )ln ,
| | | |

( ) ch[ ( 1)] ch[ ( )]( )( ) , ( )
sh2 sh[ (

k k

k k

H x t a G ax as ds
x t s t

x t a K ax as ds
x t s t

u ax PG a x QG a xu axp x q x
k E h h a k E h h a











  
   



 
    

 
      

 
   





2 1

.
)] 

        (20)                     

For the elastic plate (sheet) in the system (19) we should replace 2 on 
2 * * (1) * (1)

1 0 1 0 0 1 *(1 )(3 ) 4 and ( ) ( ) , ( ) ( ) .ab v v k dE p x b u ax k q x b u ax k        
Note that the system (17) or (19) are obtained from (16) by the change of 

integration order, the validity of which yields from Fubini’s theorem [5]. This 
theorem is used often in future without special mentioning. 

Now let consider several possible particular cases, which can be directly 
obtained from the system of integral equations (19). In the case 2 0,   we obtain 
the solution of considered problem for the case of a rigid foundation (i.e. when 
E→∞) in the form 0 0( ) ( ) and ( ) ( )p x p x q x q x  respectively. In the case of one 
finite overlay, which is given on the interval [–a, a] (or on the interval [b, c]  
respectively), instead of system (19) we will have the Fredholm’s integral equation 
of the second kind with respect to unknown function ( )p x  (or with respect to 
unknown function ( )q x  on  the interval 1 2[ , ]   respectively). Note that the 
system (19) was obtained without using the equilibrium conditions of overlays:  

 
2

1

1

1
( ) , ( ) .p x dx P a q x dx Q a





                     (21)  

In system (19) the conditions (21) are satisfied automatically, since the 

following equalities take place:  
2

1

1

0 0
1

( ) , ( ) .p x dx P a q x dx Q a




     

One can easily verify this, integrating the first equation of the system (19) 
from –1 to 1, and the second one from 1 2to  , and then changing the order of 
integration in obtained repeated integrals and taking into account the equalities  

   
2

1

1

1

, 0, , 0H x t dx x t dx




    , which following from (18). 

Thus, the solution of the problem is reduced to the solution of the system of 
Fredholm’s integral equation of the second kind with the kernels, which are square 
integrable by two variables, and with right parts of which are the solutions of the 
problem in the case of rigid foundation. It is easy to see from the system (19), that 
in the ends of overlays 1x    and 1 2, ,x x   the values of unknown contact 
stresses ( )p x   and  ( )q x  are finite.  

Further, let write the system (19) in the following form: 

 0 ,K g                                                     (22) 
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where 
2 2

0 11 12
0 2 2

0 21 22

, , ,
p k kp

g K
q q k k

 


 

   
             

 

2

1

2

1

1

11 12
1

1

21 22
1

( , ) ( ) , ( , ) ( ) ,

( , ) ( ) , ( , ) ( ) ,

k p H x t p t dt k q H x t q t dt

k p x t p t dt k q x t q t dt













 

   

 

 
                   (23) 

Now let’s consider operator Eq.(22) in Banach space B by meaning of 

vector-function 1

2

X
X

X
 

  
 

, where 1 2 2 2 1 2( 1, 1), ( , )X L X L      and with the 

norm  

 
2 2 1 2

1 2( 1,1) ( , )max , .L LX X X
 

  

2L  is а space of square integrable functions. 
Operators 11k , 22k  are acting in the spaces 2 2 1 2( 1, 1), ( , )L L     respectively 

and operators 12k and 21k  are acting in the following form: 

12 2 1 2 2: ( , ) ( 1,1)k L L    , 21 2 2 1 2: ( 1,1) ( , )k L L    . 
Obviously, the operator K acts in the B space and is Fredholm’s operator. 

Then operational Eq. (22) in the B space can be solved by the method of successive 
approximations, if 1,K   where 

   2 2
11 12 21 22max , .K k k k k       

Therefore, condition 1K   will be realized, if  

                             2 2
11 12 21 221, 1.k k k k                             (24)                       

Then the solution of Eq. (22) will be written in the form:  

   1
0 0

0
1 .n n

n
I K g K g




     

Now let determine the values of 2  parameter for which the conditions (24) 
will be satisfied. From (23), by virtue of Cauchy–Bunyakovski inequality, we will 
get: 

   

   

2

1

2 2 2

1 1 1

1/ 21/ 21 1 1
2 2

11 1 1 12 2 2
1 1 1

1/ 2 1/ 2
1

2 2
21 3 3 22 4 4

1

, , , , , ,

, , , , , .

k c c H x t dxdt k c c H x t dxdt

k c c x t dxdt k c c x t dxdt





  

  

  



  
           

   
           

   

   

   

(25)  

 

Obviously, the expressions for ( 1,2,3,4)ic i   are hard to count, but they can be 
estimated. It was found out that the following estimates take place: 
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2

1

2 2 2

1 1 1

1/ 21/ 21 1 1
2 2

1 2
1 1 1

1/ 2 1/ 2
1

2 2
3 4 2 1

1

ln , ln ,

ln , ln , .
2 2

c x t dx dt c x t dx dt

l lc x t dxdt c x t dxdt l





  

  

 

  



  
          

   
           

   

   

   

  (26) 

 

For receiving the estimates (26), we will consider c1: from Eq. (14) it is obvious that 
( 1)cos ( 0,1,2,...)
2

m x m     
 is complete orthogonal system in  2 1, 1 .L   Then, 

according to Parseval’s equality we will have,  

   
1

2 2

11
, ,m

m
H x t dx H t





    1 1t   , 

where  

     1

1

1
, cos , 1,2,...,

2m
m x

H t H x t dx m




  
  

 
  

since, we have that 0 0.H   Further, according  to (14), we have 

   
2
1

2 2 2
1

41 ,
4m mH t C t

m


 
 

  
 

 1,2,...,m   

where    1

1

11ln cos , 1,2,...,
2m

m x
C t dx m

x t




  
    
  

therefore,      
221

2 2 21
2 2 2

1 11 1

4, 1 , 1 1
4 m m

m m
H x t dx C t C t t

m


 

 

 

 
      

 
  . 

On the other hand, in virtue Cauchy–Bunyakovski inequality, we obtain 

 
1

2 2

1 1
lnm

m
C t x t dx



 

   . 

Therefore,
1/ 21 1

2
1

1 1

ln | | .c x t dxdt
 

   
 
  The rest of estimates (26) are obtained similarly. 

Then the conditions (24) will be realized, if  
    112 2

1 2 3 4,c c c c c c            . 
Therefore, the conditions of realizations (24) are obtained in the form: 

 2 min , ,c c    where ,c c   are positive numbers less then unity. 
Now, since 1 2, ,b a c a    and accepting b = 2a, c = 4a, after counting (26) 
the following estimations are obtained:  

1/ 2 1/ 21 1 4 1
2 2

1 2
1 1 2 1

1/ 2 1/ 24 4 1 4
2 2

4 3
2 2 1 2

ln | | 2.76, ln | | 2.20 ,

ln | | 2.76, ln | | 2.20 .

c x t dx dt c x t dxdt

c x t dx dt c x t dx dt

  



           
   

           
   

   

   

(27) 
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Therefore, conditions of realization (24) will be obtained in the form 2 0.20 .   
The values of contact stresses  p x  and  q x  in the points 1x    and 

1x   , 2x   , of overlays  we obtain from (19), substituting 1x    and 1x   , 

2x    accordingly.  
Further, note that the posed problems may be interpreted as a contact 

problem with piecewise homogenous finite overlay, which somehow is separated 
from deformable foundation in the part  ( , )x a b , if supposing that force P is 
unknown (inner force) and an identical, but opposite force is applied in the point 

x b  of the overlay, which is defined by the condition 2 ( ) .
c

b
s ds Q P    In this 

case, in the parts connected to different parts of piecewise homogenous overlay and 
in the points of the applied forces, for unknown share contact stresses also      
obtain  finite  values [6].  
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