Mathematics

A REPRESENTATION FOR THE SUPPORT FUNCTION OF A CONVEX BODY

R. H. ARAMYAN ${ }^{* 1,2}$, A. G. MANUCHARYAN ${ }^{1}$
${ }^{1}$ Russian-Armenian (Slavonic) University, Armenia
${ }^{2}$ Institute of Mathematics of the NAS of Republic of Armenia

In this paper a formula for a translation invariant measure of planes intersecting a n-dimensional convex body in terms of curvatures of 2 -dimensional projections of the body was found. The paper also gives a new simple proof of the representation for the support function of an origin symmetric 3-dimensional convex body, which was obtained by means of a stochastic approximation of the convex body.

MSC2010: 53C45, 52A15, 53C65.
Keywords: integral geometry, convex body, zonoid, support function.
Introduction. We denote by $\mathbb{R}^{n}(n \geq 2)$ the Euclidean n-dimensional space. Let \mathbf{S}^{n-1} be the unit sphere in \mathbb{R}^{n} and let λ_{n-1} be the spherical Lebesgue measure on $\mathbf{S}^{n-1}\left(\lambda_{k}\left(\mathbf{S}^{k}\right)=\sigma_{k}\right)$. Denote by $\mathbf{S}_{\omega} \subset \mathbf{S}^{n-1}$ the greatest $(n-2)$-dimensional circle with pole at $\omega \in \mathbf{S}^{n-1}$. The class of the origin symmetric convex bodies (nonempty compact convex sets) \mathbf{B} in \mathbb{R}^{n} we denote by \mathcal{B}_{o}^{n} (so called the centered bodies).

The most useful analytic description of compact convex sets is given by the support function (see [1]). The support function $H: \mathbb{R}^{n} \rightarrow(-\infty, \infty]$ of a body \mathbf{B} is defined by

$$
H(x)=\sup _{y \in \mathbf{B}}\langle y, x\rangle, x \in \mathbb{R}^{n}
$$

Here and below $\langle\cdot, \cdot\rangle$ denotes the Euclidean scalar product in \mathbb{R}^{n}. The support function of \mathbf{B} is positively homogeneous and convex. Below, we consider the support function $H(\cdot)$ of a convex body as a function defined on the unit sphere \mathbf{S}^{n-1} (because of the positive homogeneity of $H(\cdot)$, the values on \mathbf{S}^{n-1} determine $H(\cdot)$ completely).

It is well known that any convex body \mathbf{B} is uniquely determined by its support function [1].

[^0]A convex body \mathbf{B} is k-smooth, if its support function $H \in \mathbf{C}^{k}\left(\mathbf{S}^{n-1}\right)$, where $\mathbf{C}^{k}\left(\mathbf{S}^{n-1}\right)$ denotes the space of k times continuously differentiable functions defined on \mathbf{S}^{n-1}.

It is known (see [2, 3]) that the support function $H(\cdot)$ of a sufficiently smooth origin symmetric convex body $\mathbf{B} \in \mathcal{B}_{o}^{n}$ has the following representation:

$$
\begin{equation*}
H(\xi)=\int_{\mathbf{S}^{n-1}}|(\xi, \Omega)| h(\Omega) \lambda_{n-1}(d \Omega), \quad \xi \in \mathbf{S}^{n-1} \tag{1}
\end{equation*}
$$

with an even continuous function $h(\cdot)$ (not necessarily positive) defined on \mathbf{S}^{n-1}. Note that h is unique. Such bodies (whose support functions have the integral representation (11) with a signed even measure) are called generalized zonoids. In the case when h is a positive function on \mathbf{S}^{n-1} the centrally symmetric convex body \mathbf{B} is a zonoid.

In this article a formula for a translation invariant measure of planes intersecting an n-dimensional convex body in terms of curvatures of 2-dimensional projections of the body was found. The paper also gives a new simple prove of the representation for the support function of an origin symmetric 3-dimensional convex body (see Theorem 3), which was obtained by means of a stochastic approximation of the convex body (see [4]).

A Representation for the Translation Invariant Measure. Let \mathbf{B} be a convex body with sufficiently smooth boundary and with positive Gaussian curvature at every point of the boundary $\partial \mathbf{B}: k_{1}(\omega) \cdots k_{n-1}(\omega)>0$, where $k_{1}(\omega), \ldots, k_{n-1}(\omega)$ signify the principal curvature of $\partial \mathbf{B}$ at the point with outer normal direction $\omega \in \mathrm{S}^{n-1}$.

For two different directions $\omega, \xi \in \mathrm{S}^{n-1}, \omega \neq \xi$, we denote by $B(\omega, \xi)$ the projection of \mathbf{B} onto the 2-dimensional plane $e(\omega, \xi)$ containing the origin and the directions ω and ξ. Let $R(\omega, \xi)$ be the curvature radius of $\partial B(\omega, \xi)$ at a point, whose outer normal direction is ω, which is said to be the 2-dimensional projection curvature radius of the body. Denot by $(\widehat{\omega, \xi})$ the angle between ξ and ω. Since $R\left(\omega, \xi_{1}\right)=R\left(\omega, \xi_{2}\right)$, where $\omega, \xi_{1}, \xi_{2} \in \mathrm{~S}^{n-1}$ are linearly dependent vectors, we assume where necessary that ξ is orthogonal to ω.

Let μ be a translation invariant measure in the space \mathbf{E}^{n} of hyperplanes in \mathbb{R}^{n}. It is known that the translation invariant measure μ can be decomposed, that is there exists a finite even measure m_{n-1} on S^{n-1} such that

$$
d \mu=d p \cdot m_{n-1}(d \xi)
$$

where (p, ξ) is the usual parametrization of a hyperplane e, i.e. p is the distance from the origin O to $e, \xi \in \mathrm{~S}^{n-1}$ is the direction normal to e (see [5]). m_{n-1} is called the rose of directions of μ. We denote by $[\mathrm{B}]$ the set of hyperplanes intersecting \mathbf{B}.

Note that in the case when the translation invariant measure μ is concentrated on the bundle of parallel hyperplanes orthogonal to $\xi \in S^{n-1}$, we will have $\mu[\mathrm{B}]=2 H(\xi)$ for $\mathbf{B} \in \mathcal{B}_{o}^{n}$.

Theorem 1. Let μ be a translation invariant measure in \mathbf{E}^{n} with the rose of directions m_{n-1}. For any 2 smooth convex body $\mathrm{B} \in \mathcal{B}_{o}^{n}$ we have the following representation:

$$
\begin{equation*}
\mu([\mathrm{B}])=\frac{1}{2 \sigma_{n-2}} \int_{\mathbf{S}^{n-1}} \int_{\mathbf{S}^{n-1}} \frac{R(\omega, \xi)}{\sin ^{n-3}(\widehat{\omega, \xi})} \lambda_{n-1}(d \omega) m_{n-1}(d \xi) . \tag{2}
\end{equation*}
$$

Proof. We have

$$
\begin{equation*}
\mu([\mathrm{B}])=\int_{[\mathrm{B}]} d p m_{n-1}(d \xi)=\int_{\mathbf{S}^{n-1}} H(\xi) m_{n-1}(d \xi) \tag{3}
\end{equation*}
$$

Now we are going to find the representation for the support function of an origin symmetric n-dimensional convex body $\mathrm{B} \in \mathcal{B}_{o}^{n}$.

Let $u \in \mathrm{~S}_{\xi}$ be a direction perpendicular to $\xi \in \mathrm{S}^{n-1}$. Approximating $\mathrm{B}(u, \xi) \subset e(u, \xi)$ from inside by polygons that have their vertices on $\partial \mathrm{B}(u, \xi)$. Let denote by a_{i} the sides of the approximation polygon, by v_{i} the direction normal to a_{i} within $e(u, \xi)$ (let also denote by v_{i} the angle between the normal to a_{i} and ξ). Let $H_{\mathrm{B}(u, \xi)}$ be the support function of $\mathrm{B}(u, \xi)$ in the plane $e(u, \xi)$. We have

$$
\begin{align*}
4 H(\xi)=4 H_{\mathrm{B}(u, \xi)} & (\xi)=\lim \sum_{i}\left|a_{i}\right| \sin \left(\xi, v_{i}\right)= \\
& =\lim \sum_{i} R_{u}\left(v_{i}\right)\left|v_{i+1}-v_{i}\right| \sin \left(\xi, v_{i}\right)=2 \int_{0}^{\pi} R_{u}(v) \sin v d v \tag{4}
\end{align*}
$$

where $R_{u}(v)$ is radius of the curvature of $\mathrm{B}(u, \xi)$ at the point with normal v. Integrating both sides of Eq. (4) in $\lambda_{n-2}(d u)$ over \mathbf{S}_{ξ}, and using standard formula $\lambda_{n-1}(d \omega)=\sin ^{n-2} v d v \lambda_{n-2}(d u)$, where $\omega=(v, u)$, we obtain (see also [6])

$$
\begin{align*}
& 2 \sigma_{n-2} H(\xi)=\int_{\mathbf{S}_{\xi}} \int_{0}^{\pi} R_{u}(v) \sin v d v \lambda_{n-2}(d u)= \\
& \quad=\int_{\mathbf{S}_{\xi}} \int_{0}^{\pi} \frac{R_{u}(v)}{\sin ^{n-3} v} \sin ^{n-2} v d v \lambda_{n-2}(d u)=\int_{\mathbf{S}^{n-1}} \frac{R(\omega, \xi)}{\sin ^{n-3}(\widehat{\omega, \xi})} \lambda_{n-1}(d \omega) \tag{5}
\end{align*}
$$

Substituting (5) written for $H(\xi)$ into (3), we obtain (2).
Note that replacing $2 H(\cdot)$ by the width function $W(\cdot)$ in Eq. (4), we get a formula for the width function for any convex body (not only centrally symmetric). Hence, the representation (2) is valid for any convex body.

Using (2) one can obtain a representation for $\mu[\mathrm{B}]$ in terms of the principal radii of curvatures of the boundary of \mathbf{B}. Further, assuming that $s(\boldsymbol{\omega})$ is the point on $\partial \mathbf{B}$, which outer normal is ω, we will get that $R_{i}(\omega)$ is the i-th principal radii of curvature $(i=1, \ldots, n-1)$ of $\partial \mathrm{B}$ at $s(\omega)$.

Theorem 2. Let μ be a translation invariant measure in \mathbf{E}^{n} with the rose of directions m_{n-1}. For any 2 smooth convex body $\mathrm{B} \in \mathcal{B}_{o}^{n}$ we have the following representation:

$$
\begin{equation*}
\mu([\mathrm{B}])=\frac{1}{2 \sigma_{n-2}} \int_{\mathbf{S}^{n-1}}\left[\sum_{i=1}^{n-1} R_{i}(\omega) \int_{\mathbf{S}^{n-1}} \frac{\cos ^{2} \varphi_{i}}{\sin ^{n-3}(\widehat{\omega, \xi})} m_{n-1}(d \xi)\right] \lambda_{n-1}(d \omega) \tag{6}
\end{equation*}
$$

where φ_{i} is the angle between the i-th principal direction at $s(\omega) \in \partial \mathrm{B}$ and the projection of ξ onto the tangent plane of $\partial \mathrm{B}$ at $s(\omega)$.

Proof. For any $\omega \in \mathbf{S}^{n-1}$ and $\xi \in \mathbf{S}_{\omega}^{n-2}$ the following formula for the radius of the projection curvature of \mathbf{B} is valid (see [7]):

$$
\begin{equation*}
R(\omega, \xi)=\sum_{i=1}^{n-1} R_{i}(\omega) \cos ^{2} \varphi_{i} \tag{7}
\end{equation*}
$$

Substituting (7) into (2) and applying Fubini's theorem, we obtain (6).
Note, that the representation (6) first was found by Panina [8] using another method.

If $\mu=\mu_{i n v}$ is an invariant measure in the space \mathbf{E}^{n}, i.e. $\mu_{i n v}(d e)=d p \times \lambda_{n-1}(d \xi)$ (see [7]), so we have

Corollary. For any 2 smooth convex body B we have the following representation

$$
\begin{equation*}
\mu_{i n v}([\mathrm{~B}])=\frac{1}{n-1} \int_{\mathbf{S}^{n-1}} \sum_{i=1}^{n-1} R_{i}(\omega) \lambda_{n-1}(d \omega) . \tag{8}
\end{equation*}
$$

Indeed, let us assume that ξ has usual spherical coordinates (τ, u) (where $\left.\tau \in(0, \pi), u \in \mathbf{S}_{\omega}^{n-2}\right)$ with respect ω as the North Pole.

Substituting $\lambda_{n-1}(d \xi)=\sin ^{n-2} \tau d \tau \lambda_{n-2}(d u)$ into (6), we obtain

$$
\mu([\mathrm{B}])=\frac{a_{n}}{\sigma_{n-2}} \int_{\mathbf{S}^{n-1}} \sum_{i=1}^{n-1} R_{i}(\omega) \lambda_{n-1}(d \omega)
$$

where

$$
\frac{a_{n}}{\sigma_{n-2}}=\frac{\sigma_{n-3} \int_{0}^{\pi} \cos ^{2} v \sin ^{n-3} v d v}{\sigma_{n-3} \int_{0}^{\pi} \sin ^{n-3} v d v}=\frac{1}{n-1}
$$

Note that for $n=3$ (see Eq. (8)) coincides with the Minkowski's formula in \mathbb{R}^{n} (see [9]).

A Representation for the Support Function. Let $\mathbf{B} \in \mathcal{B}_{o}^{3}$ be a convex body with sufficiently smooth boundary and with positive Gaussian curvature at every point of $\partial \mathbf{B}$. For $\omega \in \mathbf{S}^{2}$ we denote by $k_{1}(\omega), k_{2}(\omega)$ the principal normal curvatures of $\partial \mathbf{B}$ at $s(\omega)$. Let $k(\omega, \varphi)$ be the normal curvature in direction φ at $s(\omega)$ of $\partial \mathbf{B}, \varphi$ is measured from the first principal direction. Denote by e_{ω} the plane containing the origin, which is orthogonal to ω.

Theorem 3. The support function of an origin symmetric 2-smooth convex body $\mathrm{B} \in \mathcal{B}_{o}^{3}$ has the following representation:

$$
\begin{equation*}
H(\xi)=\left(4 \pi^{2}\right)^{-1} \int_{\mathrm{S}^{2}} \int_{0}^{2 \pi} \sin ^{2} \alpha(\xi, \omega, \varphi) \frac{\sqrt{k_{1}(\omega) k_{2}(\omega)}}{k^{2}(\omega, \varphi)} d \varphi d \omega \tag{9}
\end{equation*}
$$

where $\alpha(\xi, \omega, \varphi)$ is the angle between $\varphi \in \mathbf{S}_{\omega}$ and the trace $e_{\xi} \cap e_{\omega}$.
Proof. We will need the following result from [10] (see also [4]): for any 2 -smooth origin symmetric convex body $\mathbf{B}, \omega \in \mathbf{S}^{2}$ and $\varphi \in \mathbf{S}_{\omega}$, we have

$$
\begin{equation*}
\int_{0}^{2 \pi} \sin ^{2} \alpha(\xi, \omega, \varphi) \frac{\sqrt{k_{1}(\omega) k_{2}(\omega)}}{k^{2}(\omega, \varphi)} d \varphi=\pi R(\omega, \varphi) \tag{10}
\end{equation*}
$$

where φ is the direction of the projection ξ onto the tangent plane of $\partial \mathrm{B}$ at $s(\omega)$. Note that

$$
\begin{equation*}
R(\omega, \xi)=R(\omega, \varphi) \tag{11}
\end{equation*}
$$

where $\varphi \in \mathbf{S}_{\omega}$.

For $n=3$ we have (see (5))

$$
\begin{equation*}
4 \pi H(\xi)=\int_{\mathbf{S}^{2}} R(\omega, \xi) \lambda_{2}(d \omega) \tag{12}
\end{equation*}
$$

Substituting (10) into (12) and taking into account (11), we obtain the representation (9).

Note that the representation (9) first was found in [11] (see also [4]) by means of a stochastic approximation of \mathbf{B}.

Received 11.09.2015

REFERENCES

1. Leichtweiz K. Konvexe Mengen. Berlin: VEB Deutscher Verlag der Wissenschaften, 1980.
2. Schneider R. Uber Eine Integralgleichung in der Theorie der Konvexen Korper. // Math. Nachr., 1970, v. 44, p. 55-75.
3. Wiel W., Schneider R. Zonoids and Related Topics. In: Convexity and its Applications (eds P. Gruber, J. Wills). Basel: Birkhauser, 1983, p. 296-317.
4. Aramyan R.H. Measures in the Space of Planes and Convex Bodies. // Journal of Contemporary Mathematical Analysis, 2012, v. 47, № 2, p. 19-30.
5. Ambartzumian R.V. Combinatorial Integral Geometry, Metrics and Zonoids. // Acta Appl. Math., 1987, v. 29, p. 3-27.
6. Aramyan R.H. Reconstruction of Centrally Symmetric Convex Bodies in \mathbf{R}^{n}. // Buletinul Acad. De Stiinte A R. Moldova. Mat., 2011, v. 65, № 1, p. 28-32.
7. Blaschke W. Kreis und Kugel (2nd ed.). Berlin: W. de Gruyter, 1956.
8. Panina G.Yu. Convex Bodies and Translation Invariant Measures. // Zap. Nauch. Sem. LOMI, 1986, v. 157, p.143-152 (in Russian).
9. Santalo L.A. Integral Geometry and Geometric Probability. Canada: Addison-Wesley Publishing Company, Inc., 1976.
10. Aramyan R.H. Flag Representations and Curvature Measures of a Convex Body. // Soviet Journal of Contemporary Mathematical Analysis, 1988, v. 23, № 1, p. 97-101 (in Russian).
11. Aramyan R.H. On Stochastic Approximation of Convex Bodies. // Soviet Journal of Contemporary Mathematical Analysis, 1987, v. 22, № 5, p. 427-438 (in Russian).

[^0]: * E-mail: rafikaramyan@yahoo.com

