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The present paper is a direct continuation of the paper [1]. Here we start our
study of the Moore–Penrose inversion problem for upper bidiagonal matrices
with any arrangement of one or more zeros on the main diagonal. In the paper
we obtain some preliminary results, which will be used in subsequent, third part
of the study.
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Introduction. In the first part [1] of this work we considered a problem of
computing the Moore–Penrose inverse of upper bidiagonal matrices

A =


d1 b1

d2 b2 0
. . . . . .

0 dn−1 bn−1
dn

 (1)

under the assumptions
b1,b2, . . . ,bn−1 6= 0 (2)

and
d1,d2, . . . ,dn−1 6= 0 , dn = 0 . (3)

The assumption (2) does not restrict the generality of the problem, since if
some of over-diagonal entries of the matrix A are zero, then the original problem is
decomposed into several similar problems for bidiagonal matrices of lower order. In
contrast to the assumption (3), here we will consider bidiagonal matrices of the form
(1) with any arrangement of one or more zeros on the main diagonal.
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To compute the Moore–Perrose inverse A+ of the matrix A from (1), we
represent it in block form

A =


A1 B1

A2 B2
. . . . . .

Am−1 Bm−1
Am

 (4)

with diagonal blocks Ak, k = 1,2, . . . ,m, of the size nk×nk and over-diagonal blocks
Bk, k = 1,2, . . . ,m− 1, of the size nk× nk+1, where n1 + n2 + · · ·+ nm = n. We can
carry out the partitioning (4) to get the diagonal blocks Ak having the following types:

type 1 – all diagonal entries of the block, exept the last one, are nonzero;

type 2 – all diagonal entries of the block are zero;

type 3 – all diagonal entries of the block are nonzero.

At the same time we additionally require that two blocks of type 2 are not diagonally
adjacent and as a block of type 3 can be only the last block Am. Then it is easy to see
that the described partition (4) of the matrix A is unique.

In Figure we schematically show the selected diagonal blocks (the mark ×
stands for a nonzero entry).

× ×
. . . . . .

× ×
0

Type 1

0 ×
. . . . . .

0 ×
0

Type 2

× ×
. . . . . .

× ×
×

Type 3

The types of diagonal blocks.

By virtue of the partitioning rule, the blocks Bk, k = 1,2, . . . ,m− 1, have the
following structure:

Bk =


0 0 . . . 0
...

... . . .
...

0 0 . . . 0
∆k 0 . . . 0

 , ∆k ≡ bn1+n2+···+nk . (5)
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A Way of Computing the Moore–Penrose Invertion. Here we outline the
path of finding the Moore–Penrose inverse based on the block structure of
the matrix A. For this purpose we make use of well-known equality

A+ = lim
ε→+0

(AT A+ εI)−1AT , (6)

where I is the identity matrix (see [2], for example).
Proceeding from (4), we have

AT A+ εI =


L1(ε) AT

1 B1
BT

1 A1 L2(ε) AT
2 B2 0

. . . . . . . . .
0 BT

m−2Am−2 Lm−1(ε) AT
m−1Bm−1

BT
m−1Am−1 Lm(ε)

 ,

where
L1(ε) = AT

1 A1 + εI1 , (7)

Lk(ε) = AT
k Ak +BT

k−1Bk−1 + εIk , k = 2,3, . . . ,m (8)

(here and below Ik stands for the identity matrix of order nk). Since each Ak,
1 ≤ k ≤ m− 1, is a block of type 1 or type 2, we have AT

k Bk = 0, 1 ≤ k ≤ m− 1.
Consequently AT A+ εI is a block diagonal matrix

AT A+ εI =


L1(ε)

L2(ε) 0
. . .

0 Lm−1(ε)
Lm(ε)

 . (9)

Having the block forms (4) and (9), we can write the matrix (AT A + εI)−1AT as
follows:

(AT A+ εI)−1AT =

=


L1(ε)

−1AT
1

L2(ε)
−1BT

1 L2(ε)
−1AT

2 0
. . . . . .
0 Lm−1(ε)

−1BT
m−2 Lm−1(ε)

−1AT
m−1

Lm(ε)
−1BT

m−1 Lm(ε)
−1AT

m

 .
Hence, according to the equality (6), we find

A+ =


Z1
H2 Z2 0

. . . . . .
0 Hm−1 Zm−1

Hm Zm

 , (10)
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where
Zk = lim

ε→+0
Lk(ε)

−1AT
k , k = 1,2, . . . ,m, (11)

and
Hk = lim

ε→+0
Lk(ε)

−1BT
k−1 , k = 2,3, . . . ,m . (12)

Let us consider the tasks that we will face in the process of computing the
blocks Zk and Hk in the block representation (10) of the matrix A+.

The computation of the block Z1 is clear. Indeed, from (7) and (11) we have

Z1 = lim
ε→+0

(AT
1 A1 + εI1)

−1AT
1 = A+

1 . (13)

The block A1 may be a block of type 1 or type 2. The Moore–Penrose invertion
of the block of type 1 we have completely studied in the first part [1] of this work.
It remains to consider the block of type 2.

Now let us consider the blocks Zk and Hk for the indices 2≤ k≤m. As follows
from the equalities (11) and (12), the main problem here is to invert the matrices Lk(ε)
defined in (8).

Let m ≥ 2 (if m = 1, then the Moore–Penrose invertion problem is reduced
to a problem already solved in [1]). First of all let us find out the structure of the
matrices Lk(ε). Write the block Ak in the form

Ak =


d(k)

1 b(k)
1

d(k)
2 b(k)

2 0
. . . . . .

0 d(k)
nk−1 b(k)

nk−1
d(k)

nk

 , (14)

where, according to the form of the matrix A from (1),

d(k)
i = dn1+···+nk−1+i , i = 1,2, . . . ,nk ,

b(k)i = bn1+···+nk−1+i , i = 1,2, . . . ,nk−1 .
(15)

Then the matrix Lk(ε) can be written:

Lk(ε) =

=


d(k)

1
2
+∆2

k−1+ε b(k)1 d(k)
1

b(k)1 d(k)
1 b(k)1

2
+d(k)

2
2
+ε b(k)2 d(k)

2 0
. . . . . . . . .
0 b(k)nk−2d(k)

nk−2 b(k)
2

nk−2+d(k)2
nk−1+ε b(k)nk−1d(k)

nk−1

b(k)nk−1d(k)
nk−1 b(k)

2
nk−1+d(k)2

nk +ε

 ,
(16)

where ∆k−1 = bn1+···+nk−1 (see (5)). Thus Lk(ε) is tridiagonal matrix with a special
structure.

We turn now to solving the raised problems.
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Block Z1.
As it is mentioned above, the block A1 can be one of type 1 or type 2. If A1 is

the block of type 1, then the problem of finding Z1 = A+
1 has been solved in the first

part of this work (see formulae (50)–(52) in [1]). Moreover, the entries of the block
Z1 can be computed using the algorithm 2d/pinv/special (A1⇒ A+

1 ) proposed in [1].
The algorithm requires n2

1 +O(n1) arithmetic operations.
It remains to consider the case when A1 is a block of the type 2. If n1 = 1, then

A1 = [0]1×1 and by this very fact Z1 = [0]1×1 (see [2], for example). For n1 ≥ 2 we
have

(AT
1 A1 + εI1)

−1AT =


0

b1(b2
1+ε)−1 0 0

b2(b2
2+ε)−1 0

. . . . . .
0 bn1−1(b2

n1−1+ε)−1 0

 .
Taking the limit as ε → +0, according to the equality (13), we get the lower
bidiagonal matrix

Z1 =


0

b−1
1 0 0

b−1
2 0

0
. . . . . .

b−1
n1−1 0

 . (17)

Combining the above considerations, we give below a computational
procedure.

Procedure/Z1 (A1,n1⇒ Z1).
Type 1:
– the entries of the block Z1 are recorded by the formulae (50)–(52)
derived in [1];
– the entries of the block Z1 can be computed using the algorithm
2d/pinv/special (A1⇒ A+

1 ) constructed in [1] with an order n2
1 +O(n1)

of arithmetic operations.
Type 2:
– if n1 = 1, then Z1 = [0]1×1;
– for n1 ≥ 2 the block Z1 takes the form (17).
End procedure
Now let us turn to the next problem.
Invertion of a Model Matrix L(ε). Applying the structure (16) of the matrices

Lk(ε), consider a model tridiagonal matrix
L(ε) = AT A+BT B+ εI =

=


d2

1+∆2+ε b1d1

b1d1 d2
2+b2

1+ε b2d2 0
. . . . . . . . .
0 bn−2dn−2 d2

n−1+b2
n−2+ε bn−1dn−1

bn−1dn−1 d2
n+b2

n−1+ε

 ,
(18)
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which is constructed by using the matrices

A =


d1 b1

d2 b2 0
. . . . . .

0 dn−1 bn−1
dn

 and B =


0 0 . . . 0
...

... . . .
...

0 0 . . . 0
∆ 0 . . . 0

 (19)

(we assume that in the matrix A the entries b1,b2, . . . ,bn−1 are nonzero; in the matrix
B of the size l×n the entry ∆ is also nonzero).

In a derivation of formulae for the entries of the matrix L(ε)−1 we will consider
several cases associated with the arrangement of zeros on the main diagonal of the
matrix A given in (19).

Case A: n≥ 1 and d1,d2, . . . ,dn 6= 0.

Case B: n≥ 2 and d1,d2, . . . ,dn−1 6= 0, dn = 0.

Case C: n≥ 1 d1 = d2 = · · ·= dn = 0.

Notice that the case A corresponds to the blocks of the type 3 in the block
representation (4) of our primary matrix A, while the cases B and C correspond to
the blocks of type 1 and 2 respectively.

Having the matrix A from (19), let us introduce the following notation:

rs ≡
bs

ds
, s = 1,2, . . . ,n−1; r0 = rn = 1 . (20)

• Case A (for n = 1). As obviously follows from (18),

L(ε)−1 =

[
1

d2
1 +∆2 + ε

]
1×1

. (21)

• Cases A and B (for n ≥ 2). The difference between the cases A and B just
is in the value of the entry dn. Therefore we consider these cases together.

To invert the matrix L(ε) we apply the computational procedure already used
in the first part [1] of this work

(
see algorithm 3d/inv (C⇒ C−1)

)
. Comparing the

records of the matrix L(ε) given in (18) and the matrix C given in (6) from [1], we
have

cii = d2
i +b2

i−1 + ε , i = 1,2, . . . ,n (22)

(for the purpose of unification of the records of the formulae, we set b0 = ∆), and

ci i+1 = bidi , i = 1,2, . . . ,n−1; ci i−1 = bi−1di−1 , i = 2,3, . . . ,n . (23)

Let us figure out the dependence on ε of the quantities successively computed
in the referred algorithm 3d/inv.

Using the expressions (22) and (23) for the quantities fi, gi and hi computed in
the item 1 of the algorithm, we get

fi =
◦
f i +O(ε) , i = 2,3, . . . ,n, where

◦
f i=

d2
i +b2

i−1

bi−1di−1
; (24)
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gi =
bidi

bi−1di−1
, i = 2,3, . . . ,n−1; (25)

hi =
◦
hi +O(ε) , i = 1,2, . . . ,n−1, where

◦
hi=

d2
i +b2

i−1

bidi
. (26)

Now turn to the quantities µi and νi recursively computed in the items 2 and 3
of the algorithm.

The following assertion can be easily obtained using the relations (8) from
[1] and the formulae (24), (25). Moreover, it can also be considered as a simple
consequence of similar Lemma 1 from [1].

L e m m a 1. The quantities µi are represented by

µi =
◦
µ i +O(ε) , i = 1,2, . . . ,n, (27)

where the quantities
◦
µ i satisfy the following recurrence relations:

◦
µn= 1 ,

◦
µn−1=−

◦
f n ,

◦
µ i=−

◦
f i+1

◦
µ i+1 −gi+1

◦
µ i+2 , i = n−2,n−3, . . . ,1 .

(28)

At the same time the quantities
◦
µ i computed by the recursion (28) may be

given in a closed form. The following assertion can be established by a strightforward
calculation.

L e m m a 2. The quantities
◦
µ i can be written in the form

◦
µ i= (−1)n−i

[
n−1

∏
s=i

rs +d2
n

n−1

∑
k=i

1
d2

k

(
k−1

∏
s=i

rs

)(
n−1

∏
s=k

1
rs

)]
, i = 1,2, . . . ,n. (29)

Notice that similar Lemma 2 from [1] is a particular case of just formulated
statement. The next assertion is a consequence of the formula (29).

C o r o l l a r y 1 . The relation

◦
µ i=−ri

◦
µ i+1 +

d2
n

d2
i

1
αi

, i = 1,2, . . . ,n−1 , (30)

where

αi ≡ (−1)n−i
n−1

∏
s=i

rs , i = 1,2, . . . ,n−1 , (31)

holds.
It can be readily seen that the quantities αi defined in (31) can be computed

recursively:

αn−1 =−rn−1; αi =−riαi+1 , i = n−2,n−3, . . . ,1 . (32)

A representation similar to (27) takes place also for the quantities
◦
ν i. Using

the relations (9) from [1] and the formulae (25), (26), we get the following statement.
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L e m m a 3. The quantities νi are represented by

νi =
◦
ν i +O(ε) , i = 1,2, . . . ,n, (33)

where the quantities
◦
ν i satisfy the following recurrence relations:
◦
ν1= 1 ,

◦
ν2=−

◦
h1 ,

◦
ν i=−

◦
hi−1

◦
ν i−1 −

1
gi−1

◦
ν i−2 , i = 3,4, . . . ,n .

(34)

Notice that the last Lemma can also be considered as a consequence of similar
Lemma 3 from [1].

The quantities
◦
ν i may be given in a closed form as well.

L e m m a 4. The quantities
◦
ν i can be written in the form

◦
ν i= (−1)i+1

[
i−1

∏
s=1

1
rs
+∆

2
i−1

∑
k=1

1
b2

k

(
k

∏
s=1

rs

)(
i−1

∏
s=k+1

1
rs

)]
, i = 1,2, . . . ,n. (35)

The next assertion can be readily obtained from the formula (35).
C o r o l l a r y 2 . The relation

◦
ν i+1=−

1
ri

◦
ν i +

∆2

b2
i

βi , i = 1,2, . . . ,n−1 , (36)

where

βi ≡ (−1)i
i

∏
s=1

rs , i = 1,2, . . . ,n−1 , (37)

holds.
The quantities βi defined in (37) can be computed recursively:

β1 =−r1; βi+1 =−ri+1βi , i = 1,2, . . . ,n−2 . (38)

Further, in the item 4 of the algorithm 3d/inv from [1] the quantity

t = (c11µ1 + c12µ2)
−1

is computed. Using the representation (27) of the quantities µi and the formulae (29),
(35) by strightforward calculation, we get the following assertion.

L e m m a 5. We have

t = (
◦
t +O(ε))−1, (39)

where
◦
t= d2

n
◦
νn +∆

2
α1 . (40)

R e m a r k . Having formulae (31) and (35), one can easily show that
◦
t 6= 0.

Finally, the entries of the inverse matrix

L(ε)−1 = [xi j]n×n (41)

are computed in the items 5 and 6 of the algorithm 3d/inv from [1]. First we find the
entries of the lower triangular part of the matrix, including the main diagonal:

xi j = µiν jt , j = 1,2, . . . ,n , i = j, j+1, . . . ,n . (42)
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Then we get the entries of the upper triangular part:

xi j = µ jνit , j = 2,3, . . . ,n , i = 1,2, . . . , j−1 . (43)

At the same time we note that due to the symmetry of the matrix L(ε)−1 practically
it is not necessary to perform computations by the formula (43) , we can simply set
xi j = x ji.

•Case C. As follows from (18), the matrix L(ε) in this case is diagonal. Hence

L(ε)−1 =


(∆2 + ε)−1

(b2
1 + ε)−1 0

. . .
0 (b2

n−2 + ε)−1

(b2
n−1 + ε)−1

 . (44)

Thus the inversion process of the matrix L(ε) is fully described.

Forthcoming Studies. As has been said above, our main objective is to derive
a formulae for the entries of the blocks Zk and Hk involved in the block representation
(10) of the matrix A+. These blocks are defined by means of the equalities (11) and
(12) respectively. In a subsequent, third part of the present work we will consider
more general problem of computing the model matrices

Z = lim
ε→+0

L(ε)−1AT (45)

and
H = lim

ε→+0
L(ε)−1BT , (46)

where the matrices L(ε), A, B are given in (18) and (19).
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