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It is well-known that exactly N−1 n-independent nodes uniquely determine

the curve of degree n passing through them, where N =
1
2
(n+1)(n+2). It was

proved in [1], that at least N − 4 number of n-independent nodes are needed
to determine the curve of degree n− 1 uniquely. The paper has also posed a
conjecture concerning the analogous problem for general degree k ≤ n. In the
present paper the conjecture is proved, establishing that the minimal number of
n-independent nodes uniquely determining the curve of degree k ≤ n is equal

to
(k−1)(2n+4− k)

2
+2.
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Introduction. Denote the space of all bivariate polynomials of total degree≤ n
by Πn:

Πn =

{
∑

i+ j≤n
ai jxiy j

}
.

We have

N := Nn := dimΠn =

(
n+2

2

)
.

Consider a set of s distinct nodes

Xs = {(x1,y1),(x2,y2), . . . ,(xs,ys)}.

The problem of finding a polynomial p ∈Πn, which satisfies the conditions

p(xi,yi) = ci, i = 1, . . . ,s, (1)
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is called interpolation problem.
A polynomial p ∈ Πn is called an n-fundamental polynomial for a node

A = (xk,yk) ∈ Xs if
p(xi,yi) = δik, i = 1, . . . ,s,

where δ is the Kronecker symbol. We denote this fundamental polynomial by
p?k = p?A = p?A,Xs

. Sometimes we call fundamental also a polynomial that vanishes
at all the nodes of Xs, but one, since it is a nonzero constant times a fundamental
polynomial.

Next, let us consider an important concept of n-independence (see [2, 3]).
D e f i n i t i o n 1. A set of nodes X is called n-independent, if all its nodes

have n-fundamental polynomials. Otherwise, if a node has no n-fundamental
polynomial, then X is called n-dependent.

Fundamental polynomials are linearly independent. Therefore, a necessary
condition of n-independence of Xs is s≤ N.

Suppose a node set Xs is n-independent. Then, by the Lagrange formula, we
obtain a polynomial p ∈Πn satisfying the interpolation conditions (1):

p =
s

∑
i=1

ci p?i .

In view of this we readily get that the node set Xs is n-independent if and only if the
interpolating problem (1) is solvable, that means for any data (c1, . . . ,cs) there is a
polynomial p ∈ Πn (not necessarily unique) satisfying the interpolation
conditions (1).

D e f i n i t i o n 2. The interpolation problem with a set of nodes Xs and Πn

is called n-poised, if for any data (c1, . . . ,cs), there is a unique polynomial p ∈ Πn

satisfying the interpolation conditions (1).
A necessary condition of n-poisedness of Xs is s = N.
For node sets of cardinality N we have the following
P r o p o s i t i o n 1. A set of nodes XN is n-poised, if and only if

p ∈Πn and p
∣∣
XN

= 0 =⇒ p = 0 .

Thus XN is n-poised if and only if it is n-independent.
Evidently, any subset of n-poised set is n-independent. According to the next

lemma, any n-independent set is a subset of some n-poised set (see, e.g., [4],
Lemma 2.1).

L e m m a 1. Any n-independent set Xs with s < N can be extended to a
n-poised set.

Below a well-known construction of n-poised set is described (see [5, 6]).
D e f i n i t i o n 3. A set of N = 1+ · · ·+(n+ 1) nodes is called Berzolari–

Radon set for degree n or briefly BRn set, if there exist lines l1, l2, . . . , ln+1
such that the sets l1, l2 \ l1, l3 \ (l1 ∪ l2), . . . , ln+1 \ (l1 ∪ ·· · ∪ ln) contain exactly
(n+1), n,n−1, . . . ,1 nodes respectively.
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Algebraic curve in plane is the zero set of some bivariate polynomial of degree
at least 1. The same letter, say p, is used to denote the polynomial p ∈ Πk \Πk−1
and the corresponding curve p of degree k defined by the equation p(x,y) = 0.

According to the following well-known statement, there are no more than
n+1 number of n-independent points in any line.

P r o p o s i t i o n 2. Assume that l is a line and Xn+1 is any subset of l
containing n+1 points. Then we have that

p ∈Πn and p|Xn+1 = 0 ⇒ p = lr, where r ∈Πn−1.

Denote
d := d(n,k) := Nn−Nn−k = k(2n+3− k)/2.

The following is a generalization of Proposition 2.
P r o p o s i t i o n 3. ( [7], Prop. 3.1). Let q be an algebraic curve of

degree k ≤ n without multiple components. Then we have:
i) any subset of q containing more than d(n,k) nodes is n-dependent;
ii) any subset Xd of q containing exactly d(n,k) nodes is n-independent if and

only if the following condition holds:
p ∈Πn and p|Xd = 0⇒ p = qr, where r ∈Πn−k.

Suppose that X is an n-poised set of nodes and q is an algebraic curve of degree
k ≤ n. Then, of course, any subset of X is n-independent, too. Therefore, according
to Proposition 3, i), at most d(n,k) nodes of X can lie on the curve q. Let us mention
that a special case of this when q is a set of k lines is proved in [8].

This motivates the following definition (see [7], Def. 3.1).
D e f i n i t i o n 4. Given an n-independent set of nodes Xs with s ≥ d(n,k).

A curve of degree k ≤ n passing through d(n,k) points of Xs is called maximal
for Xs.

In view of Propositions 2 and 3, any set of n+ 1 nodes located in a line is
n-independent. Note that a maximal line, as a line passing through n+ 1 nodes, is
defined in [9].

The following lemmas (see [3], Proposition 1.10, Lemma 2.2) will be needed
in the sequel.

L e m m a 2. The following two conditions are equivalent:
i) there is a k-poised subset of a set X;
ii) there is no algebraic curve of degree k passing through all the points of X.
L e m m a 3. Suppose that a node set X is n-independent and a node A /∈ X

has a n-fundamental polynomial with respect to the set X∪{A}. Then the last node
set is n-independent too.

Denote the linear space of polynomials of total degree ≤ n vanishing on X by
Pn,X =

{
p ∈Πn : p

∣∣
X
= 0
}
.

The following is well-known (see, e.g., [3]).
P r o p o s i t i o n 4. For any node set X we have

dimPn,X ≥ N−#X.
Moreover, equality takes place here if and only if the set X is n-independent.
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From here one can readily get (see [10], Corollary 2.4).
C o r o l l a r y 1. Let Y be a maximal n-independent subset of X, i.e., Y⊂ X

is n-independent and Y∪{A} is n-dependent for any A ∈ X\Y. Then we have that

Pn,Y = Pn,X. (2)

P r o o f . We have Pn,X ⊂ Pn,Y, since Y ⊂ X. Now suppose p ∈ Πn, p
∣∣
Y
= 0

and A is any node of X, we will get that Y∪{A} is dependent and, therefore, in view
of Lemma 3, we get p

∣∣
A = 0. �

From (2) and Proposition 4 (part “moreover”), we have

dimPn,X = N−#Y, (3)

where Y is any maximal n-independent subset of X. Thus all the maximal
n-independent subsets of X have the same cardinality, which is called the Hilbert
n- f unction of X and is denoted by Hn(X). Hence, according to (3), we have

dimPn,X = N−Hn(X).

P r o p o s i t i o n 5. Assume that σ is an algebraic curve of degree k
without any multiple component and Xs ⊂ σ is an arbitrary set of s n-independent
points with s < d(n,k). Then the set Xs can be extended to a maximal n-independent
set Xd ⊂ σ , where d = d(n,k).

P r o o f . It suffices to show that there is a point A ∈ σ such that the set
Xs+1 := Xs ∪ {A} is n-independent. Assume to the contrary that there is no such
point, i.e. the set Xs+1 := Xs ∪{A} is n-dependent for any A ∈ σ . Then, in view of
Lemma 3, A has no fundamental polynomial with respect to the set Xs+1. In other
words, we have

p ∈Πn and p
∣∣
Xs

= 0 =⇒ p(A) = 0 for any A ∈ σ .

From here we obtain that

Pn,Xs ⊂ Pn,σ := {qσ : q ∈Πn−k} .
Now, in view of Proposition 4, from here we get

N− s = dimPn,Xs ≤ dimPn,σ = Nn−k.

Therefore, s≥ d(n,k), which contradicts the hypothesis of Proposition. �
The Main Result. Below we determine the minimal number of n-independent

nodes that uniquely determine the curve of degree k, k ≤ n, passing through them.
T h e o r e m 1. Assume that X is an arbitrary set of (d(n,k − 1) + 2)

n-independent nodes lying on a curve of degree k with k ≤ n. Then the curve is
determined uniquely. Moreover, there is a set X1 of (d(n,k−1)+1) n-independent
nodes, such that more than one curves of degree k pass through all its nodes.

P r o o f . Let us start with the part “moreover”. Consider the part of Berzolari–
Radon set BRn belonging to the first k−1 lines `1, . . . , `k−1, i.e.

X0 = BRn∩ [`1∪·· ·∪ `k−1] .

We have that the set X0 consists of d(n,k− 1) = (n+ 1)+ n+(n− 1)+ · · ·+(n−
k+3) nodes. We get a desired set X1 by adding to this set a node A ∈ BRn \X0, i.e.
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X1 := X0 ∪{A}. Now we have that the set X1 is n-independent, since it is a subset
of n-poised set BRn and #X1 = d(n,k−1)+1. Finally, consider the curves of degree
k of the form `qk−1, where ` is any line passing through A and qk−1 = `1 · · ·`k−1. It
remains to notice that all these curves of degree k pass through all the nodes of X1.

Now let us prove the first statement of Theorem. Assume the converse that
there are two curves σ ,σ ′ ∈ Πk, which pass through all the d(n,k−1)+2 nodes of
X. In view of Proposition 5, let us enlarge X to a set X̄⊂ σ of d(n,k) n-independent
nodes, by adding n− k [= d(n,k)− (d(n,k− 1) + 2)] nodes A1, . . . ,An−k ∈ σ , i.e.
X̄ = X∪{Ai}n−k

i=1 . Then we obtain d(n,k) n-independent nodes in σ and, therefore,
this curve becomes a maximal curve of degree k with respect to the set X̄.

Next let us choose n− k distinct lines l1, . . . , ln−k, which pass through the
points A1, . . . ,An−k respectively, and are not components (factors) of σ .

Set the polynomial
p = σ

′`1 . . . `n−k ∈Πn.

Notice that p vanishes at all d(n,k) n-independent points of X̄. Therefore, by the
Proposition 3, ii), it has the following form

p = σq, q ∈Πn−k.

Thus, we have
σ
′`1 . . . `n−k = σq. (4)

The lines `1, . . . , `n−k are not factors of σ , so they are factors of q ∈ Πn−k, which
means that q = c`1 . . . `n−k, where c 6= 0. Consequently we get from (4) that

σ
′ = cσ ,

or in other words the curves σ ′ and σ coincide. �
Now let present two corollaries of Theorem. The first one concerns an

arbitrary n-independent set X with #X ≥ d(n,k − 1) + 2 (not lying necessarily
in a curve of degree k, k ≤ n−1):

C o r o l l a r y 2. Let X be a n-independent point set with #X≥ d(n,k−1)+2
and k ≤ n−1. Then there are at least (Nk−1) k-independent points in X.

P r o o f . Note that what we need to prove is H(k,X) ≥ Nk− 1. First assume
that there is a curve σ of degree k passing through all the nodes of X and, therefore,
according to Theorem, we have

dimPk,X = 1.

Thus we obtain that

H(k,X) = dim Πk−dim Pk,X = dim Πk−1 = Nk−1.

Now assume that there is no curve of degree k passing through all the nodes
of X. Then according to Lemma 2, we have

H(k,X)≥ Nk. �

In the next lemma we consider an arbitrary n-independent set X with
#X≤ d(n,k−1)+2.
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C o r o l l a r y 3. Let X be a n-independent point set with
#X ≤ d(n,k− 1) + 2 and k ≤ n− 1. Then there are at least #X− (n− k)(k− 1)
k-independent points in X.

P r o o f . In view of Lemma 1, first let us enlarge the set X to an
n-independent set X̄, #X̄= d(n,k−1)+2. By Corollary 2, there is a subset Y⊂ X̄ of
(Nk−1) k-independent points. Finally, let us remove from Y all the points belonging
to the set X̄\X. Evidently, the resulted set is k-independent, and contains at least

(Nk−1)− (#X̄−#X) = #X− (n− k)(k−1)

points. �
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