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We prove the boundedness of Bergman type integral operators in mixed
norm spaces over the unit ball of R”. Bounded harmonic projections are found
in the mixed norm and Lipschitz spaces. Corresponding Forelli-Rudin type
theorems are proved.

MSC2010: 31B10; 31B0S.

Keywords: unit ball in R"”, harmonic function, mixed norm space, Bergman
space, Bergman operator, projection, Lipschitz space.

Introduction. Let B = B, be an open unit ball in R” (n > 2) and S = dB be its
boundary in unit sphere. The integral means of order p of a function f(x) = f(r{)
on the sphere |x| = r are denoted by

Mp(f;r):Hf(’"')HLP(S;de 0<r<l, 0<p<eo

where do is the (n— 1)-dimensional area-surface Lebesgue measure on S normalized,
so that 6(S) = 1. The set of all (real) harmonic functions in the unit ball B is denoted
by h(B). Let dV be the Lebesgue volume measure on B normalized, so that V(B) = 1.
In the polar coordinates we have dV (x) = nr"~'dr do({).

By the definition, the mixed norm space L(p,q, o) (0 <p,g< oo, 0 € ]R) is the
set of those functions f(x) measurable in the unit ball B, for which the quasi-norm

1 1/q
" B </0 (l—r)“qlMg(u;r)dr> , 0<g<oo
L(p.g,a) "=

esssup (1 —r)*M,(f:r), q= oo,
0<r<1

is finite. For the subspace of L(p,q, @) consisting of harmonic functions let
h(p,q,a) :=h(B)NL(p,q, ).
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The mixed norm spaces h(p,q, o) and their analogues consisting of holomorphic,
pluriharmonic or harmonic functions in the disc, the ball in C" or R" are
extensively discussed in the last three decades. The mixed norm spaces of
holomorphic functions in the unit disc were introduced by Hardy and Littlewood [1,2]
and developed later by Flett [3]. For p = g < e the spaces h(p,q, @) coincide with
weighted Bergman spaces, see [[4, 5[], while for g = o these spaces are referred to as
weighted Hardy spaces. The spaces h(p, p,a),h(p,q, @) on the unit ball in R” were
studied in [6H16], while the space h(p, g, ) consisting of n-harmonic functions on a
polydisc in C" were studied in [[17,[18]].

In the recent paper we established a reproducing integral formula of Poisson—
Bergman type for functions in A(p,q, ) [16].

Theorem A.Leta>0andu(x) € h(p,q,a) be an arbitrary function. If
either 0 < p, g < oo, B >max{a+(n—1)(1/p—1),0or1 <p<eo 0<g<1,
B > a, then

o) = g [=DPP T By uave).  xeB )

where Py is the Poisson-Bergman type kernel defined below (see Sec. 2).
Integral Eq. (1) induces a linear integral operator of Bergman type

Tp0(3) 1= o (1= DR Bey)unavl).  xeB @

In fact, Theorem A asserts that operator 7 is the identity map on A(p,q, o) for
suitable parameters, that is, Tg(u) = u, ¥ u € h(p,q, ).
Along with the operator g, define more general operators of Bergman type:

— [x]|2)*
Tpaf)e)i= 2B [ bR Py ) 70DV ),
2(1 - )

(S50 = i ay o~ D Bpea )| 0DV ().

Note that 7 o = Tp.

It is natural here to ask whether these operators are bounded in mixed norm
spaces.

Theorem 1. If 1 < p,q <o, B>a>—A, then the operators T ;, Sg 3
continuously map the space L(p, ¢, &) into itself:

Tﬁ,l: Sﬁﬂ :L(paqva) mﬁ)l‘(puqva)a (3)

that is,
||Tﬁ,lfHL(p,q,(X) < CHf”L(p,q,a)v f € L(paq,a)a (4)
”Sﬁ,lfHL(pg,(x) < C”f”L(p,q,a)7 f € L(l’aQaa)a (5

where C = C(p,q,a,3,A) is a positive constant depending only on the indicated
parameters. Moreover, the operator Tg, continuously projects L(p,q,) onto
h(p.q,@):

Tgo: L(p,q, &) == h(p,q, ). (©6)
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Remark 1. Theorem |l|is an analogue of the well-known Forelli-Rudin
theorem in Bergman spaces. Various generalizations for holomorphic and harmonic
functions can also be found in [4-10L/17]].

Preliminaries and Proof of Theorem (1. Throughout the paper, we always
assume x =rg, y=pn, 0<rp <1, {,n €S, and the letters C(a,f,...),Cq etc.
stand for different positive constants depending only on the indicated parameters.

Definition 1. (Riemann-Liouville fractional integral and derivative for
IR?). For a function f(r) of one variable r € [0, 1), let

D f(r) = r(la)/or(r—t)a_lf(t)dt . F}:;)/Ol(l — 0% ferdt,

D)= () S0 Do) =D ),

where 0<r<l,a>0,meZ, m>0, m—1<o<m.
Definition 2. (Fractional integral and derivative for R", n > 2).
Given a function f(x) in the unit ball B, let

af( ) —(a+n/2— ])D {rn/Z—lf(x)} _
- F(loo/olﬂ —0)* (),
DY f(x):= r_("/z_l)DO‘{ra+"/2_1f(x)}, r=|x|.

This version of the fractional derivative in R” is introduced in [[16] and makes
it possible to apply it to the extended Poisson kernel in B [[13]]

L Py
(1=2x-y+ xly[2)n/2’
in order to obtain the Poisson-Bergman type kernel Pg in B mentioned in
Theorem A. Here x - y means the Euclidean inner product.

Definition 3. (Poisson—Bergman type kernel in B).

Po(x,y) := DyP(x,y) x,y€B, a=>0. (7

Similar kernels are defined in [[11] (for integer o), [4}6L/7,(9,/10L/12].

Note that Poisson-Bergman type kernel Pg(x,y) is a harmonic function with
respect to both x and y.

Lemma 1. Forany 8 > o > 0 there hold the inequalities

P(x,y) = Py(x,y) := xEB,y€B,

do(§) 1
5 [E — xjatn—1 SC(OC,n)W, x€B, ®)
1(1—1‘)0‘_] 1
/O Wdlgc(a7ﬁ)m, OS,/-<17 (9)
/ (1—]y))* AV(y) <ClaBn)—— x—rfeB  (10)
R R (R

The estimates of Lemma [l are well known and can be found in [[7,[12}[14].
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We also need the next well-known inequality (see, e.g., [3]]).
Lemma 2. (Hardy’s inequality). If 1< p <oo, > —1,g(r) >0, then

/01(1—r)/3 </0 ()dt> dr<C/ B gP (),

where the constant C = C(p, ) > 0 depends only on p and f3.

Proof of Theorem 1. Let f(x) € L(p,q, ) be an arbitrary function.
It suffices to prove only ().

We need an estimate for the Poisson-Bergman type kernel Pj (see, e.g.,
(7,812, 14])

|POC (x7 y)
It follows that

|(Sp.f) ()] < C(B, A,m) (1= [x)* /B(l =P B ) IF )]V (v) <

C(a,n
|—|px(n|aJ)rnla )C:I‘C, y=pn, (XZO,

1 —p2 B—1
<Cn) (=) [ R 0l dp o)

Replace here x by Qx, where Q is an arbitrary orthogonal linear transformation Q :
R" — R”, that is, |Qx| = |x| for all x € R". Recall that the measure o is invariant
under rotations, meaning 6 (Q(G)) = o(G) for every Borel set G C S and every
orthogonal transformation Q. Applying also the change n — On, we find that

|(Sgaf)(Qx)] <

B—1
< C(B.Aun) (1—|OxP) lii)

!pr in‘”’”"*1

= C(B,2m) (1— ) / /S e mwﬂ _f(pon)|p" 'dpdo(n).

Further, we use Minkowski’s inequality in the continuous form, Lemma 1 and the

identity
1/p
(il = [IF@arag) . s
where the integral is taken over the orthogonal group. Hence,
M, (Sﬁ,lf ;1) <

< C(BAm) (1= ) / / - mﬁml M, (f:p)dpda(n) <

1f(pQn)|p" 'dpdo(n) =

_ p2)B-1
C(B,l,n)(lfrz)’t/o ((i_fp;MMp(f;p)dpz (11)
r 1 _ ~2\B-1
—cprm -~ +[>Wm<f;p>dps
r Mp ;
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Case 1 < g <o First note that the last integral in (1 1)) is convergent since
B > a and

1 1
(1=pHP "M, (fip)dp < | (1=p)* ' My(fip)dp < Callflliipr.o) < +o0
0 0

for ¢ = 1, while for 1 < g < oo we estimate by Holder’s inequality (1/¢+1/¢ =1)

1 1 d
) a=p2P ygipydp = (1= p2) e (:p) P <

1 ) d 1/q 1 d 1/q
< [[a-pr e 2N [fa-pramire) ) -

I—p
= C(a7B7Q) Hf”L(p,q,oc) < oo,
By the triangle inequality and next by Hardy’s inequality in Lemma 2,

1Sp.2Flipg.ay = | (1= 1) Mp(Spa S5 )| pagary 1)) <

r dp
<clla=n* () =Py +
H g (=) " || aiars(1-m)

+CH(1—r ) B/ P)P =M, (f:p)dp

<
Li(dr/(1-r))
1/q

1 1— 1
sclfumnede (Gmn) o] -
) q 1/q
e[ ([0 ) <l

Case g=oo. Since (1—7r)*M,(f;r) <||fllr(pe,ea) and B > o, the last
integral in (I 1)) again converges

! _ a2\B-1 . ! _ \B-1 HfHL(p,oo,a) B
[ =P taripyap <y [ (1-p) -t ETEESE ap

= C(a, B[ fllipeona) < oo

Therefore by Lemma 1,

p)P-!

My(Sp.af:r) < CBAm) (1) [ e My fip)dp <

)P
2P| fll oo,y
C(ﬁ7lvn>(1_r2)l/o él_fp))ﬁ—ﬁ—/l (l_p)

T(1-p)f!
=C(B,A,n) || fll(p,eo,ery (1 —rz)l/o de <
1
C(et, B,24,n) || fll(p,eo,cr) (1 —rz)lm-

Thus
(1=r)*Mp(Spfir) <C(a, B, A1) [f]l(poogy: OST<I,
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S0, and (3) are proved.

Since the operator Tg o (A = 0) is bounded on L(p,q,a) and is the identity
map on i(p,q, o) (by Theorem A), the mapping (6), 5 : L(p,q,®) — h(p,q, )
is a harmonic projection of L(p,q, ) onto h(p,q,a). The proof of Theorem 1 is
complete. O

Bounded Projection on the Lipschitz Space. It would be of interest to find
out the images of other classical function spaces under the Bergman operators. It
turns out that 7g preserves the Lipschitz classes in B.

Definition 4. A function f(x) given in the unit ball B is said to belong
to Lipschitz space Lipo (0 < o < 1), if

|f(X)—f(y)|§C((x,n)|x—y|a, x,yGB.

The Lipschitz space Lip & is equipped with a seminorm

() = £0)]

JliLipa := sup
H H 1p o oty |x—y|°‘
and Lip & becomes a Banach space with the norm |f(0)|+ || f||Lipa- Let hLip o be
the subspace of Lip & consisting of harmonic functions,
hLipo := h(B) NLipa.

The following is an analogue of the classical Hardy-Littlewood theorem []1].
The proof is a repetition of the classical one with obvious changes.

Lemma 3. Harmonic function u(x) is in hLipa (0 < o < 1) if and only if

Vu(x)| < Clam)(1— )™, xeB.

Corresponding seminorms are equivalent:

Cla,n)l|ullLipa < sup(1—[x])'~%|Vu(x)| < C(ot,n) ullLipa-
xXEB

)

Now we study the action of the Bergman type operators in Lipschitz spaces.
Theorem 2. ForO < a <1, >0, the operator Tg continuously projects
Lip o onto its harmonic subspace hLip «,

T : Lipa ™% hLipa,
that is,
175 fllbLipa < C(et, B,0)| fllLipas  f € Lipa.

Proof. Let f(x) € Lipa be an arbitrary function not necessarily harmonic.
Because of Theorem A
2
= [ (=P ' Ps(x,y)dV(y), x€B.
ST L PP By av )

It follows that for any fixed pointz € B, 0 < |z —x| < 1 —|x],

TN = mrgs [1=DEP ) (F0) 1)V 0)+ £, (12)

We also need an estimate for the derivatives of the Poisson—-Bergman kernel (see,
e.g., [7,/8L[12}[14])
C(a,n)

[ViPo(x,y)| < [px—njetn’

x=rf, y=pn, o >0, (13)
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Differentiation of with the gradient V, and estimation by using of and the
obvious inequality [y —x| < |px—n/, x,y € B, lead to

Vb)) < s =D Vb 170) = £V ) <

o
<@ ) [[(1- B I flhipe o av() <
<C(@fon) [P I hipa 2 4V ) <

< @B |l | —2=1 avy).
- P4 s lpx—mlr+t

The application of the triangle inequality and Lemma 1 finally yields:

_ ly—x|*
VT (f) ()| < Cllf [Lipe  Tox = v (y)+
1
+C”f”Lipa’x_Z|a/B de(ﬁ <
1
< .
< Clflpe |, 1o 4V O)+

1
T
+Cll fllLipa (1= [x]) B|px_n,n+1dV(y)_

! (1= |x)*
<C ipog—————+C g —— =
= HfHLlpa (1 — \x\)l—a + Hf”LlPa 1— ‘X‘
1
=C(a,B,n)|fllLipa A=)
This together with Lemma 3 completes the proof of Theorem [2] U

Remark 2. Theorem 2| asserts that the Bergman operator 75 = Tj  acts
as a bounded harmonic projection in Lipschitz spaces. Preservation of Lipschitz
spaces under the Bergman projection was studied in [[19] (for unweighted Bergman
projection) and in [20] (for integer 3).

This work is carried out under the supervision of Prof. K. Avetisyan.
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