PROCEEDINGS OF THE YEREVAN STATE UNIVERSITY

Physical and Mathematical Sciences

2016, № 1, p. 3-6

Mathematics

ON A FAMILY OF POLYNOMIALS WITH RESPECT TO THE HAAR SYSTEM

S. L. GOGYAN *

Institute of Mathematics of the NAS of Republic of Armenia

We construct a sequence of polynomials with respect to the Haar system and show that they form democratic bases in $L^1(0, 1)$.

MSC2010: Primary 42C05; Secondary 42C30.

Keywords: Haar polynomial, Haar system, democratic bases in $L^{1}(0, 1)$.

Introduction. Let $\Psi = \{\psi_k\}_{k=1}^{+\infty}$ be a basis in a Banach space *X*. For a finite subset of natural numbers *A*, $A \subset \mathbb{N}$, denote

$$f_A = \sum_{i \in A} \psi_i.$$

In the case when X is a Hilbert space and Ψ is an orthonormal system one has $||f_A|| = \sqrt{|A|}$, where |A| denotes the cardinality of A. However, in the general case $||f_A||$ depends on |A| as well as on the elements of A. In [1] it was introduced the term of democratic systems, namely:

D e finition. A set of elements $\Psi = \{\psi_n\}$ is called democratic system in X, if there exists a number $C \ge 1$, such that for any finity sets of integers A and B with |A| = |B| the following relation holds

$$\|f_A\| \leq C \|f_B\|.$$

Democratic systems are related to the Greedy Algorithms. For details we refer to [2]. It is known that the Haar system is a democratic basis in $L^p(0,1)$ for $1 . However, in <math>L^1(0,1)$ the Haar system is not democratic system. In [3] it was characterized all subsets of the Haar system that are democratic system in $L^1(0,1)$.

In this paper we construct a basis in $L^1(0,1)$ which is also democratic. Each element of that system is a polynomial with respect to the Haar system.

Let us remind the definition of the Haar system normalized in $L^1(0,1)$. Values of Haar functions at the points of discontinuity are not important for us, so we will

^{*} E-mail: gogyan@instmath.sci.am

change those values for the simplicity of definition. We denote $\Delta_1 = [0, 1]$. A dyadic interval $\left[\frac{j-1}{2^i}, \frac{j}{2^i}\right); j = 1, 2, ..., 2^i, i = 0, 1, 2, ...,$ will be denoted by $\Delta_i^{(j)} = \Delta_{2^i+j}$. The left half of $\left[\frac{j-1}{2^i}, \frac{j}{2^i}\right)$ is the dyadic interval $\left[\frac{2j-2}{2^{i+1}}, \frac{2j-1}{2^{i+1}}\right)$ and the right half is $\left[\frac{2j-1}{2^{i+1}}, \frac{2j}{2^{i+1}}\right)$. Therefore, for any $n \ge 2$ we have $\Delta_n = \Delta_{2^n-1} \sqcup \Delta_{2^n}$

$$\Delta_n = \Delta_{2n-1} \cup \Delta_{2n}$$
.

The Haar function associated with Δ_1 is the function $h_1 = h_{\Delta_1} \equiv 1$ and the Haar function associated with Δ_n , $n = 2^i + j$, $j = 1, 2, ..., 2^i$, i = 0, 1, 2, ..., is

$$h_n(x) = h_i^{(j)}(x) = \begin{cases} 2^i & \text{for } x \in \Delta_{2n-1}; \\ -2^i & \text{for } x \in \Delta_{2n}; \\ 0 & \text{otherwise.} \end{cases}$$

It is clear that

$$\int_0^1 h_n(t)dt = 0 \text{ and } \int_0^1 |h_n(t)| dt = 1$$

The Haar system is the set of functions $\mathbb{H} = \left\{h_n\right\}_{n=1}^{+\infty}$. The coefficients of expansion $c_n(f,\mathbb{H})$ are determined by the formulae

$$c_{[0,1]}(f,\mathbb{H}) = c_1(f,\mathbb{H}) = \int_0^1 f(x)dx,$$

$$c_{\Delta_n}(f,\mathbb{H}) = c_n(f,\mathbb{H}) = \int_{\Delta_{2n-1}} f(x)dx - \int_{\Delta_{2n}} f(x)dx, \quad n \ge 2.$$
(1)

Denote $\psi_i = h_i^{(2)}$ and let $\Phi = \left\{ \phi_n : n = 1, 2, ... \right\}$ be a system of functions consisting of the Haar functions $\mathbb{H} \setminus \left\{ h_i^{(2)} \right\}_{i=1}^{+\infty}$ with the same order as in \mathbb{H} (if $\phi_{m_1} = h_{n_1}, \phi_{m_2} = h_{n_2}$ and $m_1 < m_2$, then $n_1 < n_2$).

Let $\{M_i\}$ be a sequence of natural numbers. Denote $N_0 = 0$ and inductively define a sequence $N_i = N_{i-1} + M_i$. For a natural number *i* denote

$$f_{(i,0)} = \phi_i - \frac{1}{M_i + 1} \sum_{k=N_{i-1}+1}^{N_i} \psi_k,$$

and if $1 \leq j \leq M_i$, then

$$f_{(i,j)} = f_{(i,0)} + \psi_{N_{i-1}+j}$$

In this paper we prove the following theorems.

Theorem 1. For any sequence of natural numbers $\{M_i\}$ the set of functions $\{\{f_{(i,j)}\}\}_{i=0}^{M_i}\}_{i=1}^{\infty}$ is a basis in $L^1(0,1)$.

Theorem 2. Let $\{M_i\}$ be a sequence of increasing natural numbers with $M_{i+1} \ge 2M_i$. Then the set of functions $\left\{\left\{f_{(i,j)}\right\}\right\}_{j=0}^{M_i}\right\}_{i=1}^{\infty}$ is a democratic basis in $L^1(0,1)$.

For the proof we adopt ideas in [4] and [5].

Proofs of the Theorems. Let $e_i = \{\delta_{ij}\}$ and let M_i , N_i , ϕ_i and ψ_i are defined as above. Denote $\sigma_n = [N_{n-1} + 1, N_n] \cap \mathbb{N}$. One has $|\sigma_n| = M_n$. For a sequence $a \in l_1$ denote

$$m_n(a) = \sum_{i \in \sigma_n} a_i$$

and define operators $\mathcal{P}_n: l_1 \to l_1$ by

$$\mathcal{P}_n(a) = \frac{m_n(a)}{M_n} \sum_{i \in \sigma_n} e_i.$$

Finally, define

$$\mathfrak{P}a = \sum_{n=1}^{\infty} \mathfrak{P}_n a, \quad \mathfrak{Q}a = a - \mathfrak{P}a.$$

Its obvious that $||\mathcal{P}|| = 1$. For $a \in c_{00}$ define

$$||a||_{Y} = ||Qa||_{l_{1}} + ||\sum_{n} m_{n}(a)\phi_{n}||_{L^{1}},$$

where c_{00} is the set of sequences with finite number of non zero terms. Completing this norm, we obtain a sequence space *Y*.

Theorem 3. The basic sequence $\{e_i\}$ is a Schauder basis for Y. Additionally, if $M_{i+1} \ge 2M_i$ for all $i \in \mathbb{N}$, then for any finite subset $A \subset \mathbb{N}$ one has

$$\frac{2|A|}{3} \le \|\sum_{i \in A} e_i\|_Y \le 3|A|.$$
(2)

Proof. Subspaces $\{e_i : i \in \sigma_n\}$ form a Schauder decomposition of Y. Since $\|\mathcal{P}\| = 1$, we have $\|\mathcal{Q}\| \le 2$ and so each sequence $\{e_i : i \in \sigma_n\}$ in Y is 3 isomorphic to $\{e_i : i \in \sigma_n\}$ as a subspace in l_1 . Thus $\{e_i\}$ is a basis in Y.

Now let us prove inequality (2).

The upper estimate follows from the bound

$$\begin{split} \|\sum_{i\in A} e_i\|_Y &\leq \|\mathcal{P}(\sum_{i\in A} e_i)\|_{l_1} + \|\sum_{i\in A} e_i\|_{l_1} + \|\sum_n m_n(\sum_{i\in A} e_i)\phi_n\|_{L^1} \leq \\ &\leq (1+\|P\|) |A| + \sum_n |m_n(\sum_{i\in A} e_i)| \leq 3 |A|. \end{split}$$

To proceed the lower estimate, let us choose the biggest k such that $|A \cap \sigma_k| \ge \frac{M_k}{2}$. If such k does not exist, then we put k = 0. According to the monotonicity property of the Haar system, we have that

$$\|\sum_{i\in A} e_i\|_Y \ge \|\sum_n m_n(\sum_{i\in A} e_i)\phi_n\|_{L^1} \ge |m_k(\sum_{i\in A} e_i)| \ge \frac{M_k}{2}.$$
 (3)

To complete the Proof of Theorem, we will need the following simple lemma immediately obtained from the definition of Q.

Lemma. Let
$$B \subset \sigma_n$$
 and $|B| < \frac{|\sigma_n|}{2}$ for some natural *n*. Then
$$\left\| Q\left(\sum_{i \in B} e_i\right) \right\|_{l_1} \ge \frac{|B|}{2}.$$

Denote $D = \{i \in A : i \ge N_k\}$. According to the definition of k and Lemma, we have

$$\left\| \mathcal{Q}\left(\sum_{i\in D} e_i\right) \right\|_{l_1} = \sum_{n>k} \left\| \mathcal{Q}\left(\sum_{i\in D\cap\sigma_n} e_i\right) \right\|_{l_1} \ge \\ \ge \sum_{n>k} \frac{|D\cap\sigma_n|}{2} = \frac{|D|}{2} \ge \\ \ge \frac{|A|-2|\sigma_k|}{2} = \frac{|A|-2M_k}{2}.$$
(4)

In the last estimate we use the relation $N_k = M_1 + \ldots + M_k \le 2M_k$. Combining (3) and (4), we get

$$\begin{split} \left\|\sum_{i\in A} e_i\right\|_Y &= \left\|Q(\sum_{i\in A} e_i)\right\|_{l_1} + \left\|\sum_n m_n(\sum_{i\in A} e_i)\phi_n\right\|_{L^1} \geq \\ &\geq \frac{M_k}{2} + \max\left(0, \frac{|A| - 2M_k}{2}\right) \geq \frac{2|A|}{3}. \end{split}$$

It is shown in [4], that there is an isomorphic operator $R: Y \to L^1(0, 1)$ mapping the basic sequence e_i to the functions $f_{(i,j)}$. So, Theorems 1 and 2 are proved.

Received 29.10.2015

REFERENCES

- 1. Konyagin S., Temlyakov V.N. A Remark on Greedy Approximation in Banach Spaces. // East J. Approx., 1999, v. 5, p. 365–379.
- 2. Temlyakov V.N. Greedy Approximation. // Acta Numerica, 2008, v. 17, p. 235-409.
- Gogyan S. Greedy Algorithm with Regard to Haar Subsystems. // East J. Approx., 2005, v. 11, p. 221–236.
- 4. Gogyan S. An Example of Almost Greedy Basis in L¹(0,1). // Proceedings of the American Mathematical Society, 2010, v. 138, p. 1425–1432.
- Dilworth S.J., Kalton N.J., Kutzarova D. On the Existence of Almost Greedy Bases in Banach Spaces. // Studia Mathematica, 2003, v. 159, p. 67–101.