Mathematics

ON A FAMILY OF POLYNOMIALS WITH RESPECT TO THE HAAR SYSTEM

S. L. GOGYAN *
Institute of Mathematics of the NAS of Republic of Armenia

We construct a sequence of polynomials with respect to the Haar system and show that they form democratic bases in $L^{1}(0,1)$.

MSC2010: Primary 42C05; Secondary 42C30.
Keywords: Haar polynomial, Haar system, democratic bases in $L^{1}(0,1)$.
Introduction. Let $\Psi=\left\{\psi_{k}\right\}_{k=1}^{+\infty}$ be a basis in a Banach space X. For a finite subset of natural numbers $A, A \subset \mathbb{N}$, denote

$$
f_{A}=\sum_{i \in A} \psi_{i}
$$

In the case when X is a Hilbert space and Ψ is an orthonormal system one has $\left\|f_{A}\right\|=\sqrt{|A|}$, where $|A|$ denotes the cardinality of A. However, in the general case $\left\|f_{A}\right\|$ depends on $|A|$ as well as on the elements of A. In [1] it was introduced the term of democratic systems, namely:

Definition. A set of elements $\Psi=\left\{\psi_{n}\right\}$ is called democratic system in X, if there exists a number $C \geq 1$, such that for any finity sets of integers A and B with $|A|=|B|$ the following relation holds

$$
\left\|f_{A}\right\| \leq C\left\|f_{B}\right\|
$$

Democratic systems are related to the Greedy Algorithms. For details we refer to [2]. It is known that the Haar system is a democratic basis in $L^{p}(0,1)$ for $1<p<\infty$. However, in $L^{1}(0,1)$ the Haar system is not democratic system. In [3] it was characterized all subsets of the Haar system that are democratic system in $L^{1}(0,1)$.

In this paper we construct a basis in $L^{1}(0,1)$ which is also democratic. Each element of that system is a polynomial with respect to the Haar system.

Let us remind the definition of the Haar system normalized in $L^{1}(0,1)$. Values of Haar functions at the points of discontinuity are not important for us, so we will

[^0]change those values for the simplicity of definition. We denote $\Delta_{1}=[0,1]$. A dyadic interval $\left[\frac{j-1}{2^{i}}, \frac{j}{2^{i}}\right) ; j=1,2, \ldots, 2^{i}, i=0,1,2, \ldots$, will be denoted by $\Delta_{i}^{(j)}=\Delta_{2^{i}+j}$. The left half of $\left[\frac{j-1}{2^{i}}, \frac{j}{2^{i}}\right)$ is the dyadic interval $\left[\frac{2 j-2}{2^{i+1}}, \frac{2 j-1}{2^{i+1}}\right)$ and the right half is $\left[\frac{2 j-1}{2^{i+1}}, \frac{2 j}{2^{i+1}}\right)$. Therefore, for any $n \geq 2$ we have
$$
\Delta_{n}=\Delta_{2 n-1} \cup \Delta_{2 n}
$$

The Haar function associated with Δ_{1} is the function $h_{1}=h_{\Delta_{1}} \equiv 1$ and the Haar function associated with $\Delta_{n}, n=2^{i}+j, j=1,2, \ldots, 2^{i}, i=0,1,2, \ldots$, is

$$
h_{n}(x)=h_{i}^{(j)}(x)=\left\{\begin{aligned}
2^{i} & \text { for } x \in \Delta_{2 n-1} \\
-2^{i} & \text { for } x \in \Delta_{2 n} \\
0 & \text { otherwise }
\end{aligned}\right.
$$

It is clear that

$$
\int_{0}^{1} h_{n}(t) d t=0 \text { and } \int_{0}^{1}\left|h_{n}(t)\right| d t=1
$$

The Haar system is the set of functions $\mathbb{H}=\left\{h_{n}\right\}_{n=1}^{+\infty}$. The coefficients of expansion $c_{n}(f, \mathbb{H})$ are determined by the formulae

$$
\begin{gather*}
c_{[0,1]}(f, \mathbb{H})=c_{1}(f, \mathbb{H})=\int_{0}^{1} f(x) d x \\
c_{\Delta_{n}}(f, \mathbb{H})=c_{n}(f, \mathbb{H})=\int_{\Delta_{2 n-1}} f(x) d x-\int_{\Delta_{2 n}} f(x) d x, \quad n \geq 2 \tag{1}
\end{gather*}
$$

Denote $\psi_{i}=h_{i}^{(2)}$ and let $\Phi=\left\{\phi_{n}: n=1,2, \ldots\right\}$ be a system of functions consisting of the Haar functions $\mathbb{H} \backslash\left\{h_{i}^{(2)}\right\}_{i=1}^{+\infty}$ with the same order as in \mathbb{H} (if $\phi_{m_{1}}=h_{n_{1}}, \phi_{m_{2}}=h_{n_{2}}$ and $m_{1}<m_{2}$, then $n_{1}<n_{2}$).

Let $\left\{M_{i}\right\}$ be a sequence of natural numbers. Denote $N_{0}=0$ and inductively define a sequence $N_{i}=N_{i-1}+M_{i}$. For a natural number i denote

$$
f_{(i, 0)}=\phi_{i}-\frac{1}{M_{i}+1} \sum_{k=N_{i-1}+1}^{N_{i}} \psi_{k}
$$

and if $1 \leq j \leq M_{i}$, then

$$
f_{(i, j)}=f_{(i, 0)}+\psi_{N_{i-1}+j}
$$

In this paper we prove the following theorems.
Theorem 1. For any sequence of natural numbers $\left\{M_{i}\right\}$ the set of functions $\left.\left\{\left\{f_{(i, j)}\right\}\right\}_{j=0}^{M_{i}}\right\}_{i=1}^{\infty}$ is a basis in $L^{1}(0,1)$.

Theorem 2. Let $\left\{M_{i}\right\}$ be a sequence of increasing natural numbers with $M_{i+1} \geq 2 M_{i}$. Then the set of functions $\left.\left\{\left\{f_{(i, j)}\right\}\right\}_{j=0}^{M_{i}}\right\}_{i=1}^{\infty}$ is a democratic basis in $L^{1}(0,1)$.

For the proof we adopt ideas in [4] and [5].
Proofs of the Theorems. Let $e_{i}=\left\{\delta_{i j}\right\}$ and let M_{i}, N_{i}, ϕ_{i} and ψ_{i} are defined as above. Denote $\sigma_{n}=\left[N_{n-1}+1, N_{n}\right] \cap \mathbb{N}$. One has $\left|\sigma_{n}\right|=M_{n}$. For a sequence $a \in l_{1}$ denote

$$
m_{n}(a)=\sum_{i \in \sigma_{n}} a_{i}
$$

and define operators $\mathcal{P}_{n}: l_{1} \rightarrow l_{1}$ by

$$
\mathcal{P}_{n}(a)=\frac{m_{n}(a)}{M_{n}} \sum_{i \in \sigma_{n}} e_{i}
$$

Finally, define

$$
\mathcal{P} a=\sum_{n=1}^{\infty} \mathcal{P}_{n} a, \quad \mathcal{Q} a=a-\mathcal{P} a
$$

Its obvious that $\|\mathcal{P}\|=1$. For $a \in c_{00}$ define

$$
\|a\|_{Y}=\|Q a\|_{l_{1}}+\left\|\sum_{n} m_{n}(a) \phi_{n}\right\|_{L^{1}}
$$

where c_{00} is the set of sequences with finite number of non zero terms. Completing this norm, we obtain a sequence space Y.

Theorem 3. The basic sequence $\left\{e_{i}\right\}$ is a Schauder basis for Y. Additionally, if $M_{i+1} \geq 2 M_{i}$ for all $i \in \mathbb{N}$, then for any finite subset $A \subset \mathbb{N}$ one has

$$
\begin{equation*}
\frac{2|A|}{3} \leq\left\|\sum_{i \in A} e_{i}\right\|_{Y} \leq 3|A| \tag{2}
\end{equation*}
$$

Proof. Subspaces $\left\{e_{i}: i \in \sigma_{n}\right\}$ form a Schauder decomposition of Y. Since $\|\mathcal{P}\|=1$, we have $\|Q\| \leq 2$ and so each sequence $\left\{e_{i}: i \in \sigma_{n}\right\}$ in Y is 3 isomorphic to $\left\{e_{i}: i \in \sigma_{n}\right\}$ as a subspace in l_{1}. Thus $\left\{e_{i}\right\}$ is a basis in Y.

Now let us prove inequality (2).
The upper estimate follows from the bound

$$
\begin{aligned}
\left\|\sum_{i \in A} e_{i}\right\|_{Y} & \leq\left\|\mathcal{P}\left(\sum_{i \in A} e_{i}\right)\right\|_{l_{1}}+\left\|\sum_{i \in A} e_{i}\right\|_{l_{1}}+\left\|\sum_{n} m_{n}\left(\sum_{i \in A} e_{i}\right) \phi_{n}\right\|_{L^{1}} \leq \\
& \leq(1+\|P\|)|A|+\sum_{n}\left|m_{n}\left(\sum_{i \in A} e_{i}\right)\right| \leq 3|A|
\end{aligned}
$$

To proceed the lower estimate, let us choose the biggest k such that $\left|A \cap \sigma_{k}\right| \geq \frac{M_{k}}{2}$. If such k does not exist, then we put $k=0$. According to the monotonicity property of the Haar system, we have that

$$
\begin{equation*}
\left\|\sum_{i \in A} e_{i}\right\|_{Y} \geq\left\|\sum_{n} m_{n}\left(\sum_{i \in A} e_{i}\right) \phi_{n}\right\|_{L^{1}} \geq\left|m_{k}\left(\sum_{i \in A} e_{i}\right)\right| \geq \frac{M_{k}}{2} \tag{3}
\end{equation*}
$$

To complete the Proof of Theorem, we will need the following simple lemma immediately obtained from the definition of Q.
$\boldsymbol{L} \boldsymbol{e} \boldsymbol{m} \boldsymbol{m} \boldsymbol{a}$. Let $B \subset \sigma_{n}$ and $|B|<\frac{\left|\sigma_{n}\right|}{2}$ for some natural n. Then

$$
\left\|Q\left(\sum_{i \in B} e_{i}\right)\right\|_{l_{1}} \geq \frac{|B|}{2} .
$$

Denote $D=\left\{i \in A: i \geq N_{k}\right\}$. According to the definition of k and Lemma, we have

$$
\begin{align*}
\left\|Q\left(\sum_{i \in D} e_{i}\right)\right\|_{l_{1}} & =\sum_{n>k}\left\|Q\left(\sum_{i \in D \cap \sigma_{n}} e_{i}\right)\right\|_{l_{1}} \geq \\
& \geq \sum_{n>k} \frac{\left|D \cap \sigma_{n}\right|}{2}=\frac{|D|}{2} \geq \tag{4}\\
& \geq \frac{|A|-2\left|\sigma_{k}\right|}{2}=\frac{|A|-2 M_{k}}{2} .
\end{align*}
$$

In the last estimate we use the relation $N_{k}=M_{1}+\ldots+M_{k} \leq 2 M_{k}$.
Combining (3) and (4), we get

$$
\begin{gathered}
\left\|\sum_{i \in A} e_{i}\right\|_{Y}=\left\|Q\left(\sum_{i \in A} e_{i}\right)\right\|_{l_{1}}+\left\|\sum_{n} m_{n}\left(\sum_{i \in A} e_{i}\right) \phi_{n}\right\|_{L^{1}} \geq \\
\geq \frac{M_{k}}{2}+\max \left(0, \frac{|A|-2 M_{k}}{2}\right) \geq \frac{2|A|}{3} .
\end{gathered}
$$

It is shown in [4], that there is an isomorphic operator $R: Y \rightarrow L^{1}(0,1)$ mapping the basic sequence e_{i} to the functions $f_{(i, j)}$. So, Theorems 1 and 2 are proved.

Received 29.10.2015

REFERENCES

1. Konyagin S., Temlyakov V.N. A Remark on Greedy Approximation in Banach Spaces. // East J. Approx., 1999, v. 5, p. 365-379.
2. Temlyakov V.N. Greedy Approximation. // Acta Numerica, 2008, v. 17, p. 235-409.
3. Gogyan S. Greedy Algorithm with Regard to Haar Subsystems. // East J. Approx., 2005, v. 11, p. 221-236.
4. Gogyan S. An Example of Almost Greedy Basis in $L^{1}(0,1)$. // Proceedings of the American Mathematical Society, 2010, v. 138, p. 1425-1432.
5. Dilworth S.J., Kalton N.J., Kutzarova D. On the Existence of Almost Greedy Bases in Banach Spaces. // Studia Mathematica, 2003, v. 159, p. 67-101.

[^0]: * E-mail: gogyan@instmath.sci.am

