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In this paper a new differentiation and divided difference formula for
rational functions is proved. The main result is a connection between divided
differences of two rational functions with the same numerator, where the knots
of one divided difference coincide with the zeros of the denominator of another
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Introduction. Denote the space of all polynomials of degree ≤ n by πn:

πn =

{
∑
i≤n

aixi

}
.

We have that
dimπn = n+1.

Consider a set of n+1 distinct knots (points)

{a0,a1, . . . ,an} ⊂ R.
The problem of finding a polynomial p ∈ πn, which satisfies the conditions

p(ai) = ci, i = 0, . . . ,n, (1)

is called interpolation problem. It is well-known that for any data {ci, i = 0, . . . ,n}
there exists a unique polynomial p ∈ πn satisfying the conditions (1) (see [1, 2]).

The polynomial from πn satisfying the conditions

p(ai) = f (ai), i = 0, . . . ,n,

is called interpolation polynomial of f . Let us denote it by

p f := p f ,n := p f ,n,a0,...,an .
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We have the following Lagrange formula for the interpolation polynomial:

p f =
n

∑
i=0

f (ai)p∗i , (2)

where p∗i (x) = ∏
j∈{0,...,n}\{i}

x−a j

ai−a j
.

The divided difference of f with respect to the set of knots {a0, . . . ,an} denoted
by [a0, . . . ,an] f is defined as the coefficient of xn in p f (see [1], Section 1.3):

[a0, . . . ,an] f = the leading coe f f icient o f p f .

Therefore, we get from (2) that

[a0, . . . ,an] f =
n

∑
i=0

f (ai)

∏
j∈{0,...,n}\{i}

(ai−a j)
.

Note that usually the divided differences are defined also through the familiar
recurrence relation:

[a0, . . . ,an] f =
[a1, . . . ,an] f − [a0, . . . ,an−1] f

an−a0
and [a] f = f (a).

The following well-known divided difference formula for the function
1

x−b
will be used in the sequel

[a0, . . . ,an]
1

x−b
=

(−1)n

(a0−b) · · ·(an−b)
. (3)

Note that in view of the recurrence relation, it can be readily proved by
induction on n.

The divided difference with repeated (multiple) knots {x0, . . . ,xn} is defined
as a limit of the divided differences with distinct knots:

[x0, . . . ,xn] f = lim
m→∞

[a(m)
0 , . . . ,a(m)

n ] f .

Here the knots of the divided difference in the right hand side are distinct for each m
and a(m)

i → xi when m→ ∞. It is also assumed that the function f is smooth enough,
say f ∈C(n).

The following relation between the divided difference and higher order
derivative is important:

f (n)(x) = n![x, . . . ,x] f , (4)

where x in the divided difference is repeated n+1 times.
By applying this relation to divided difference formulas one gets readily

the respective differentiation formulas. For example, in this way, by setting
a0 = · · ·= an = x in (3), we get the following differentiation formula:[

1
x−b

](n)
=

n!(−1)n

(x−b)n .
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The Main Result.
The Divided Difference Formula.
P r o p o s i t i o n 1. Let p be a polynomial from πm+n+1 with the

leading coefficient γ. Suppose also that q1(x) = (x − b0) · · ·(x − bm) and
q2(x) = (x−a0) · · ·(x−an), where ai are different from b j.

Then we have

[a0, . . . ,an]
p
q1

= γ− [b0, . . . ,bm]
p
q2

.

In particular, we have

[a0, . . . ,an]
p
q1

=−[b0, . . . ,bm]
p
q2

, if p ∈ πm+n.

P r o o f . Assume that p ∈ πk and divide it by q1 to get

p = sq1 + r, (5)

where s ∈ πk−m−1 and r ∈ πm. Note that

p(bi) = r(bi), i = 0, . . . ,m. (6)

Now we have

[a0, . . . ,an]
p
q1

= [a0, . . . ,an]s+[a0, . . . ,an]
r
q1

.

Notice that if p is a polynomial from πm+n+1, then s ∈ πn and the leading
coefficients of p and s coincide. Thus [a0, . . . ,an]s = γ.

Next, the rational function
r
q1

is a proper quotient.

Let us present it in the form of sum of simple quotients:
r
q1

=
m

∑
i=0

Ai

x−bi
,

where

Ai =
r(bi)

∏
j∈{0,...,m}\{i}

(bi−b j)
. (7)

Note that the simple quotient representation actually coincides with the
Lagrange formula (2).

Now, by using the formula (3), we get

[a0, . . . ,an]
r
q1

=
m

∑
i=0

Ai
(−1)n

(a0−bi) · · ·(an−bi)
=−

m

∑
i=0

Ai

(bi−a0) · · ·(bi−an)
.

Next, in view of formulas (6) and (7), we obtain

[a0, . . . ,an]
r
q1

=−
m

∑
i=0

r(bi)

∏
j∈{0,...,m}\{i}

(bi−b j)
· 1
(bi−a0) · · ·(bi−an)

=

=−
m

∑
i=0

p(bi)

q2(bi)
· 1

∏
j∈{0,...,m}\{i}

(bi−b j)
=−[b0, . . . ,bm]

p
q2

. �

Notice that actually we proved the following more general result:
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P r o p o s i t i o n 2. Let p be a polynomial from πk. Suppose also
that q1(x) = (x− b0) · · ·(x− bm) and q2(x) = (x− a0) · · ·(x− an), where ai are
different from b j. Then we have

[a0, . . . ,an]
p
q1

= [a0, . . . ,an]s− [b0, . . . ,bm]
p
q2

,

where the polynomial s ∈ πk−m−1 is the quotient of p and q1 defined by
the equality (5).

The Differentiation Formula. Let us set a0 = · · · = an = x in
Proposition 2. Then, in view of the formula (4), we readily get the following
differentiation result for rational functions:

P r o p o s i t i o n 3. Let p be a polynomial from πk. Suppose also that
q(x) = (x−b0) · · ·(x−bm).

Then we have(
p
q

)(n)

(x) = s(n)(x)−n![b0, . . . ,bm]
p(·)

(·− x)n+1 ,

where the divided difference is with respect to the variable · , and the polynomial
s ∈ πk−m−1 is the quotient of p and q1 defined by the equality (5).

Some Special Cases.
The Case m = 0.
Consider the following special case of Proposition 1: p(x)≡ 1 and m = 0, i.e.

q1(x) = (x−b). Then we have γ = 0 and, therefore,

[a0, . . . ,an]
1

x−b
=− 1

q2(b)
=− 1

(b−a0) · · ·(b−an)
=

(−1)n

(a0−b) · · ·(an−b)
.

Thus, we get the formula (3). Next, let p be any polynomial from πn. Now, again we

have γ = 0 and

[a0, . . . ,an]
p(x)
x−b

=− p(b)
q2(b)

=
(−1)n p(b)

(a0−b) · · ·(an−b)
.

In the case of a polynomial p from πn+1 with the leading coefficient γ we get

[a0, . . . ,an]
p(x)
x−b

= γ− p(b)
q2(b)

= γ +
(−1)n p(b)

(a0−b) · · ·(an−b)
.

From here, by taking a0 = · · · = an = x, we get the following differentiation
formulas: [

p(x)
x−b

](n)
=

(−1)nn!p(b)
[(x−b)]n+1 for any p ∈ πn,

[
p(x)
x−b

](n)
= γn!+

(−1)nn!p(b)
[(x−b)]n+1 for any p ∈ πn+1.

Let us consider also
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The Case m = 1.
Now consider the special case m = 1 of Proposition 1.
Let p be any polynomial from πn. Then we have γ = 0 and

[a0, . . . ,an]
p(x)

(x−b0)(x−b1)
=

=
(−1)n

b1−b0

[
p(b1)

(a0−b1) · · ·(an−b1)
− p(b0)

(a0−b0) · · ·(an−b0)

]
.

In the case of polynomial from πn+1 with the leading coefficient γ we get

[a0, . . . ,an]
p(x)

(x−b0)(x−b1)
=

= γ +
(−1)n

b1−b0

[
p(b1)

(a0−b1) · · ·(an−b1)
− p(b0)

(a0−b0) · · ·(an−b0)

]
.

From here, by taking a0 = · · · = an = x, we get the following differentiation
formulas:[

p(x)
(x−b0)(x−b1)

](n)
=

(−1)nn!
b1−b0

[
p(b1)

[(x−b1)]n+1 −
p(b0)

[(x−b0)]n+1

]
for any p ∈ πn,[

p(x)
(x−b0)(x−b1)

](n)
= γn!+

(−1)nn!
b1−b0

[
p(b1)

[(x−b1)]n+1 −
p(b0)

[(x−b0)]n+1

]
for any p ∈ πn+1.
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