MOORE-PENROSE INVERSE OF BIDIAGONAL MATRICES. III

Yu. R. HAKOPIAN ${ }^{1}$ * S. S. ALEKSANYAN ${ }^{2 * *}$
${ }^{1}$ Chair of Numerical Analysis and Mathematical Modeling YSU, Armenia
${ }^{2}$ Chair of Mathematics and Mathematical Modeling RAU, Armenia

The present paper is a direct continuation of the papers [1, 2]. We obtain intermediate results, which will be used in the next final fourth part of this study, where a definitive solution to the Moore-Penrose inversion problem for singular upper bidiagonal matrices is given.

MSC2010: Primary 15A09; Secondary 65F20.
Keywords: generalized inverse, Moore-Penrose inverse, bidiagonal matrix.
Introduction. In this paper we continue the study started in our previous papers [1,2]. In [2] we consider the Moore-Penrose inversion problem for singular upper bidiagonal matrices

$$
A=\left[\begin{array}{ccccc}
d_{1} & b_{1} & & & \tag{1}\\
& d_{2} & b_{2} & 0 & \\
& & \ddots & \ddots & \\
& 0 & & d_{n-1} & b_{n-1} \\
& & & & d_{n}
\end{array}\right]
$$

with any arrangement of one or more zeros on the main diagonal and under assumption $b_{1}, b_{2}, \ldots, b_{n-1} \neq 0$. To solve the problem in [2] we carried out some preliminary constructions and calculations. Recall the main steps of the proposed approach. First we have represented the matrix (1) in the block form

$$
A=\left[\begin{array}{ccccc}
A_{1} & B_{1} & & & \tag{2}\\
& A_{2} & B_{2} & & \\
& & \ddots & \ddots & \\
& & & A_{m-1} & B_{m-1} \\
& & & & A_{m}
\end{array}\right]
$$

with diagonal blocks $A_{k}, k=1,2, \ldots, m$, of the size $n_{k} \times n_{k}$ and over-diagonal blocks $B_{k}, k=1,2, \ldots, m-1$, of the size $n_{k} \times n_{k+1}$, where $n_{1}+n_{2}+\ldots+n_{m}=n$.

[^0]The structure of the blocks was specified in the Introduction of [2]. Further, it has been shown that the Moore-Penrose inverse A^{+}of the matrix (2) has the following block form:

$$
A^{+}=\left[\begin{array}{ccccc}
Z_{1} & & & & \tag{3}\\
H_{2} & Z_{2} & & 0 & \\
& \ddots & \ddots & & \\
& 0 & H_{m-1} & Z_{m-1} & \\
& & & H_{m} & Z_{m}
\end{array}\right]
$$

and the blocks Z_{k} and H_{k} are computed by the formulae

$$
\begin{align*}
Z_{k} & =\lim _{\varepsilon \rightarrow+0} L_{k}(\varepsilon)^{-1} A_{k}^{T}, \quad k=1,2, \ldots, m \tag{4}\\
H_{k} & =\lim _{\varepsilon \rightarrow+0} L_{k}(\varepsilon)^{-1} B_{k-1}^{T}, \quad k=2,3, \ldots, m \tag{5}
\end{align*}
$$

where

$$
\begin{gather*}
L_{1}(\varepsilon)=A_{1}^{T} A_{1}+\varepsilon I_{1} \tag{6}\\
L_{k}(\varepsilon)=A_{k}^{T} A_{k}+B_{k-1}^{T} B_{k-1}+\varepsilon I_{k}, \quad k=2,3, \ldots, m \tag{7}
\end{gather*}
$$

and I_{k} stands for the identity matrix of order n_{k} (see [2] A Way of Computing the Moore-Penrose Invertion).

The problem of computing the block Z_{1} is completely discussed in [2] (see Block \mathbf{Z}_{1}).

As it is seen from (4) and (7) for the values $k=2,3, \ldots, m$, the blocks Z_{k} are computed by similar formulae. The same can be said about the blocks H_{k} (see (5) and (7)). The difference consists only in sizes and types of the diagonal blocks A_{k} (see [2] Introduction). Note that each block A_{k} separately is an upper bidiagonal matrix. Therefore we realize the computation of the blocks Z_{k} and H_{k} by solving several standard model problems. To this end we introduced a model tridiagonal matrix

$$
\begin{equation*}
L(\varepsilon)=A^{T} A+B^{T} B+\varepsilon I \tag{8}
\end{equation*}
$$

which is constructed by other model matrices

$$
A=\left[\begin{array}{ccccc}
d_{1} & b_{1} & & & \tag{9}\\
& d_{2} & b_{2} & 0 & \\
& & \ddots & \ddots & \\
& 0 & & d_{n-1} & b_{n-1} \\
& & & & d_{n}
\end{array}\right] \quad \text { and } \quad B=\left[\begin{array}{cccc}
0 & 0 & \ldots & 0 \\
\vdots & \vdots & \ldots & \vdots \\
0 & 0 & \ldots & 0 \\
\Delta & 0 & \ldots & 0
\end{array}\right]
$$

(we assume that the entries $b_{1}, b_{2}, \ldots, b_{n-1}$ of the matrix A as well as the entry Δ of the $l \times n$ matrix B are nonzero.)

In the model problems we will also consider the case when the matrix A from (9) is nonsingular. The formulae for the entries of the inverse matrix $L(\varepsilon)^{-1}$ were derived in [2] (see Invertion of a Model Matrix $L(\varepsilon)$).

Thus, as it was mentioned in [2], our next task is to compute the model matrices

$$
\begin{equation*}
Z=\lim _{\varepsilon \rightarrow+0} L(\varepsilon)^{-1} A^{T} \tag{10}
\end{equation*}
$$

and

$$
\begin{equation*}
H=\lim _{\varepsilon \rightarrow+0} L(\varepsilon)^{-1} B^{T} \tag{11}
\end{equation*}
$$

where $L(\varepsilon), A, B$ are specified in (8) and (9). In this connection we will separately consider the cases A, B and C outlined in [2] (Invertion of a Model Matrix $L(\varepsilon)$).

Computation of the Model Matrices Z and H.
Case A. Remind that this case provides $n \geq 1$ and $d_{1}, d_{2}, \ldots, d_{n} \neq 0$.
If $n=1$, then the matrices Z and H have a simple view:

$$
\begin{equation*}
Z=\left[\frac{d_{1}}{d_{1}^{2}+\Delta^{2}}\right]_{1 \times 1}, \quad H=\left[0 \ldots 0 \frac{\Delta}{d_{1}^{2}+\Delta^{2}}\right]_{1 \times l} \tag{12}
\end{equation*}
$$

It can be easily obtained from the equalities (10) and (11).
The case $n \geq 2$ is more complicated. Let us start with the computation of the matrix $Z=\left[z_{i j}\right]_{n \times n}$. For this purpose consider the matrix

$$
\begin{equation*}
L(\varepsilon)^{-1} A^{T} \equiv Y(\varepsilon)=\left[y_{i j}(\varepsilon)\right]_{n \times n} \tag{13}
\end{equation*}
$$

According to the definition (10) of the matrix Z, we have

$$
\begin{equation*}
z_{i j}=\lim _{\varepsilon \rightarrow+0} y_{i j}(\varepsilon), \quad i, j=1,2, \ldots, n \tag{14}
\end{equation*}
$$

As it follows from (13), for indeces $1 \leq j \leq n-1$ the entries $y_{i j}(\varepsilon)$ of the matrix $Y(\varepsilon)$ are calculated by the rule

$$
\begin{equation*}
y_{i j}(\varepsilon)=x_{i j} d_{j}+x_{i j+1} b_{j}, \quad i=1,2, \ldots, n \tag{15}
\end{equation*}
$$

For a fixed index j in the range $1 \leq j \leq n-1$ let us separately consider the cases $i=1,2, \ldots, j$ and $i=j+1, j+2, \ldots, n$.

- Case $i=1,2, \ldots, j$.

Using the expressions for the entries $x_{i j}$ of the matrix $L(\varepsilon)^{-1}$ (see formula (43) in [2]), from (15) we obtain

$$
\begin{equation*}
y_{i j}(\varepsilon)=t v_{i}\left(\mu_{j} d_{j}+\mu_{j+1} b_{j}\right) \tag{16}
\end{equation*}
$$

Then, using the representations of the quantities μ_{i} (see (27) in [2]), we get

$$
\begin{equation*}
\mu_{j} d_{j}+\mu_{j+1} b_{j}=\left(\stackrel{\circ}{\mu}_{j} d_{j}+\stackrel{\circ}{\mu}_{j+1} b_{j}\right)+O(\varepsilon) \tag{17}
\end{equation*}
$$

Substituting the expression (17) as well as the representations of the quantities v_{i} and t (see (33) and (39) in [2]) into the right hand side of the equality (16), we obtain

$$
y_{i j}(\varepsilon)=\frac{\left(\stackrel{\circ}{\vee}_{i}+O(\varepsilon)\right)\left(\left(\stackrel{\circ}{\mu}_{j} d_{j}+\stackrel{\circ}{\mu}_{j+1} b_{j}\right)+O(\varepsilon)\right)}{\stackrel{\circ}{t}+O(\varepsilon)} .
$$

Then, calculating the limit as $\varepsilon \rightarrow+0$, according to (14), we find that

$$
\begin{equation*}
z_{i j}=\frac{{\stackrel{\circ}{v_{i}}}\left(\stackrel{\circ}{\mu}_{j} d_{j}+\stackrel{\circ}{\mu}_{j+1} b_{j}\right)}{\stackrel{\circ}{t}}, \quad i=1,2, \ldots, j \tag{18}
\end{equation*}
$$

In the $[2]($ Case B) we obtained the expression (40) for the quantity $\stackrel{\circ}{t}$. Therefore, we get

$$
\begin{equation*}
z_{i j}=\frac{\stackrel{\circ}{v}_{i}\left(\stackrel{\circ}{\mu}_{j} d_{j}+\stackrel{\circ}{\mu}_{j+1} b_{j}\right)}{d_{n}^{2} \stackrel{\circ}{v}_{n}+\Delta^{2} \alpha_{1}}, \quad i=1,2, \ldots, j \tag{19}
\end{equation*}
$$

To derive the closed form expressions for the entries of the matrix Z, let us trasform the right hand side of the equality (19). First consider the sum $\stackrel{\circ}{\mu}_{j} d_{j}+\stackrel{\circ}{\mu}_{j+1} b_{j}$. Using the closed form expression for the quantity $\stackrel{\circ}{\mu}_{i}$ (see formula (29) in [2]), we have

$$
\begin{align*}
\stackrel{\circ}{\mu}_{j} d_{j}+\stackrel{\circ}{\mu}_{j+1} b_{j}= & (-1)^{n-j}\left[d_{j} \prod_{s=j}^{n-1} r_{s}-b_{j} \prod_{s=j+1}^{n-1} r_{s}\right] \\
& +(-1)^{n-j} d_{n}^{2}\left[d_{j} \sum_{k=j}^{n-1} \frac{1}{d_{k}^{2}}\left(\prod_{s=j}^{k-1} r_{s}\right)\left(\prod_{s=k}^{n-1} \frac{1}{r_{s}}\right)\right. \tag{20}\\
& \left.-b_{j} \sum_{k=j+1}^{n-1} \frac{1}{d_{k}^{2}}\left(\prod_{s=j+1}^{k-1} r_{s}\right)\left(\prod_{s=k}^{n-1} \frac{1}{r_{s}}\right)\right] \equiv J_{1}+J_{2} .
\end{align*}
$$

It can be readily shown that $J_{1}=0$. The addend J_{2} is transformed as follows:

$$
\begin{align*}
J_{2}= & (-1)^{n-j} d_{n}^{2} d_{j}\left[\sum_{k=j}^{n-1} \frac{1}{d_{k}^{2}}\left(\prod_{s=j}^{k-1} r_{s}\right)\left(\prod_{s=k}^{n-1} \frac{1}{r_{s}}\right)\right. \\
& \left.-\sum_{k=j+1}^{n-1} \frac{1}{d_{k}^{2}}\left(\prod_{s=j}^{k-1} r_{s}\right)\left(\prod_{s=k}^{n-1} \frac{1}{r_{s}}\right)\right] \tag{21}\\
= & (-1)^{n-j} d_{n}^{2} d_{j} \cdot \frac{1}{d_{j}^{2}} \prod_{s=j}^{n-1} \frac{1}{r_{s}}=(-1)^{n-j} \frac{d_{n}^{2}}{d_{j}} \prod_{s=j}^{n-1} \frac{1}{r_{s}}
\end{align*}
$$

Thus, from (20) and (21) we get

$$
\begin{equation*}
\stackrel{\circ}{\mu}_{j} d_{j}+\stackrel{\circ}{\mu}_{j+1} b_{j}=(-1)^{n-j} \frac{d_{n}^{2}}{d_{j}} \prod_{s=j}^{n-1} \frac{1}{r_{s}} . \tag{22}
\end{equation*}
$$

Further, using the expressions for the quantites α_{i} and $\stackrel{\circ}{V}_{i}$ (see formulae (31) and (35) from [2]), we can write the sum $d_{n}^{2}{\stackrel{\circ}{v_{n}}}_{n}+\Delta^{2} \alpha_{1}$ in the following form:

$$
\begin{align*}
& d_{n}^{2} \stackrel{\circ}{v}_{n}+\Delta^{2} \alpha_{1}= \\
& (-1)^{n-1} d_{n}^{2}\left[\prod_{s=1}^{n-1} \frac{1}{r_{s}}+\Delta^{2} \sum_{k=1}^{n-1} \frac{1}{b_{k}^{2}}\left(\prod_{s=1}^{k} r_{s}\right)\left(\prod_{s=k+1}^{n-1} \frac{1}{r_{s}}\right)\right]+(-1)^{n-1} \Delta^{2} \prod_{s=1}^{n-1} r_{s} \tag{23}
\end{align*}
$$

Finally, if we replace the expression of the quantity $\stackrel{\circ}{v}_{i}$ (see formula (35) in [2]) as well as the expressions (22) and (23) into the equality (19), for the values of indeces $1 \leq j \leq n-1$ and $i=1,2, \ldots, j$, we get

$$
\begin{equation*}
z_{i j}=\frac{(-1)^{i+j}\left[\prod_{s=1}^{i-1} \frac{1}{r_{s}}+\Delta^{2} \sum_{k=1}^{i-1} \frac{1}{b_{k}^{2}}\left(\prod_{s=1}^{k} r_{s}\right)\left(\prod_{s=k+1}^{i-1} \frac{1}{r_{s}}\right)\right] \cdot \frac{d_{n}^{2}}{d_{j}} \prod_{s=j}^{n-1} \frac{1}{r_{s}}}{d_{n}^{2}\left[\prod_{s=1}^{n-1} \frac{1}{r_{s}}+\Delta^{2} \sum_{k=1}^{n-1} \frac{1}{b_{k}^{2}}\left(\prod_{s=1}^{k} r_{s}\right)\left(\prod_{s=k+1}^{n-1} \frac{1}{r_{s}}\right)\right]+\Delta^{2} \prod_{s=1}^{n-1} r_{s}} \tag{24}
\end{equation*}
$$

- Case $i=j+1, j+2, \ldots, n$.

Using the expressions for the entries $x_{i j}$ of the matrix $L(\varepsilon)^{-1}$ (formula (42) in [2]), from (15) we have

$$
\begin{equation*}
y_{i j}(\varepsilon)=t \mu_{i}\left(v_{j} d_{j}+v_{j+1} b_{j}\right) \tag{25}
\end{equation*}
$$

Then, having the representations of the quantities v_{i} (see (33) in [2]), we get

$$
\begin{equation*}
v_{j} d_{j}+v_{j+1} b_{j}=\left(\stackrel{\circ}{v}_{j} d_{j}+\stackrel{\circ}{v}_{j+1} b_{j}\right)+O(\varepsilon) \tag{26}
\end{equation*}
$$

Substituting the expression (26) as well as the representations of the quantities μ_{i} and t (see (27) and (39) in [2]) into the right hand side of the equality (25), we obtain

$$
y_{i j}(\varepsilon)=\frac{\left(\stackrel{\circ}{\mu}_{i}+O(\varepsilon)\right)\left(\left(\stackrel{\circ}{v}_{j} d_{j}+\stackrel{\circ}{\vee}_{j+1} b_{j}\right)+O(\varepsilon)\right)}{\stackrel{\circ}{t}+O(\varepsilon)} .
$$

Calculating the limit in the last equality as $\varepsilon \rightarrow+0$, according to (14), we find

$$
\begin{equation*}
z_{i j}=\frac{\stackrel{\circ}{\mu}_{i}\left(\stackrel{\circ}{v}_{j} d_{j}+\stackrel{\circ}{\vee}_{j+1} b_{j}\right)}{\stackrel{\circ}{t}}, \quad i=j+1, j+2, \ldots, n \tag{27}
\end{equation*}
$$

or, by analogy with (19), $z_{i j}=\frac{\stackrel{\circ}{\mu}_{i}\left(\stackrel{\circ}{v}_{j} d_{j}+{\stackrel{\circ}{{ }^{\circ}}}_{j+1} b_{j}\right)}{d_{n}^{2} \stackrel{\circ}{\nu}_{n}+\Delta^{2} \alpha_{1}}, \quad i=j+1, j+2, \ldots, n$.
From here, performing calculations similar to those that led to the formula (24), we obtain

$$
\begin{equation*}
z_{i j}=\frac{(-1)^{i+j+1}\left[\prod_{s=i}^{n-1} r_{s}+d_{n}^{2} \sum_{k=i}^{n-1} \frac{1}{d_{k}^{2}}\left(\prod_{s=i}^{k-1} r_{s}\right)\left(\prod_{s=k}^{n-1} \frac{1}{r_{s}}\right)\right] \cdot \frac{\Delta^{2}}{d_{j}} \prod_{s=1}^{j-1} r_{s}}{d_{n}^{2}\left[\prod_{s=1}^{n-1} \frac{1}{r_{s}}+\Delta^{2} \sum_{k=1}^{n-1} \frac{1}{b_{k}^{2}}\left(\prod_{s=1}^{k} r_{s}\right)\left(\prod_{s=k+1}^{n-1} \frac{1}{r_{s}}\right)\right]+\Delta^{2} \prod_{s=1}^{n-1} r_{s}} \tag{28}
\end{equation*}
$$

for the of indeces $1 \leq j \leq n-1$ and $i=j+1, j+2, \ldots, n$.
So it remains to deduce expressions for the entries of the last column of the matrix Z. As follows from (13), the entries $y_{i n}(\varepsilon)$ of the matrix $Y(\varepsilon)$ are calculated by the rule $y_{i n}(\varepsilon)=x_{i n} d_{n}, i=1,2, \ldots, n$. According to the formula (43), from [2] we have $x_{i n}=\mu_{n} v_{i} t$, and since $\mu_{n}=1$ (see (8) in [1]) we get $y_{i n}(\varepsilon)=v_{i} t d_{n}, i=1,2, \ldots, n$. Thus, a similar argument that led us to the expressions (18) and (24), we find that

$$
\begin{equation*}
z_{i n}=\frac{d_{n} \stackrel{\circ}{v}_{\circ}^{\circ}}{t}, \quad i=1,2, \ldots, n \tag{29}
\end{equation*}
$$

or otherwise

$$
\begin{equation*}
z_{\text {in }}=\frac{(-1)^{n-i} d_{n}\left[\prod_{s=1}^{i-1} \frac{1}{r_{s}}+\Delta^{2} \sum_{k=1}^{i-1} \frac{1}{b_{k}^{2}}\left(\prod_{s=1}^{k} r_{s}\right)\left(\prod_{s=k+1}^{i-1} \frac{1}{r_{s}}\right)\right]}{d_{n}^{2}\left[\prod_{s=1}^{n-1} \frac{1}{r_{s}}+\Delta^{2} \sum_{k=1}^{n-1} \frac{1}{b_{k}^{2}}\left(\prod_{s=1}^{k} r_{s}\right)\left(\prod_{s=k+1}^{n-1} \frac{1}{r_{s}}\right)\right]+\Delta^{2} \prod_{s=1}^{n-1} r_{s}}, \tag{30}
\end{equation*}
$$

where $i=1,2, \ldots, n$.
$\boldsymbol{R} \boldsymbol{e} \boldsymbol{m} \boldsymbol{a r} \boldsymbol{k}$. It is easy to see that the formula (30) can be "incorporated" in the formula (24), if we extend the last one to the case $j=n$.

Summarizing the considerations of the section, namely having the expressions (12),(24) and (28), we get the following statement.

Lemmal $\boldsymbol{1}$ [Case A]. For the matrix $Z=\left[z_{i j}\right]_{n \times n}$ defined in (10) we have: if $n=1$, then

$$
Z=\left[\frac{d_{1}}{d_{1}^{2}+\Delta^{2}}\right]_{1 \times 1}
$$

if $n \geq 2$, then:
a) for the indeces $j=1,2, \ldots, n$ and $i=1,2, \ldots, j$ the entries $z_{i j}$ are computed by the formula (24);
b) for the indeces $j=1,2, \ldots, n-1$ and $i=j+1, j+2, \ldots, n$ the entries $z_{i j}$ are computed by the formula (28).

Now consider the matrix $H=\left[h_{i j}\right]_{n \times l}$. We introduce the matrix

$$
\begin{equation*}
L(\varepsilon)^{-1} B^{T} \equiv W(\varepsilon)=\left[w_{i j}(\varepsilon)\right]_{n \times n} \tag{31}
\end{equation*}
$$

By the definition (11) of the matrix H we have

$$
\begin{equation*}
h_{i j}=\lim _{\varepsilon \rightarrow+0} w_{i j}(\varepsilon), \quad i=1,2, \ldots, n, j=1,2, \ldots, l \tag{32}
\end{equation*}
$$

It can be easily seen that the entries of the first $l-1$ columns of the matrix $W(\varepsilon)$ are zero. This implies that the corresponding columns of the matrix H are also zeros. The entries of the last column of the matrix $W(\varepsilon)$ are written as follows:

$$
w_{i l}(\varepsilon)=x_{i 1} \Delta, \quad i=1,2, \ldots, n
$$

Since $x_{i 1}=\mu_{i} v_{1} t$ (see formula (42) in [2]) and $v_{1}=1$ (see (9) in [1]), then

$$
w_{i l}(\varepsilon)=\mu_{i} t \Delta, \quad i=1,2, \ldots, n
$$

Thus, by the argument leading us to the expressions (18) and (24), we find that

$$
\begin{equation*}
h_{i l}=\stackrel{\circ}{\mu}_{i} \Delta / \stackrel{\circ}{t}, \quad i=1,2, \ldots, n \tag{33}
\end{equation*}
$$

or otherwise

$$
\begin{equation*}
h_{i l}=\frac{(-1)^{i+1} \Delta\left[\prod_{s=i}^{n-1} r_{s}+d_{n}^{2} \sum_{k=i}^{n-1} \frac{1}{d_{k}^{2}}\left(\prod_{s=i}^{k-1} r_{s}\right)\left(\prod_{s=k}^{n-1} \frac{1}{r_{s}}\right)\right]}{d_{n}^{2}\left[\prod_{s=1}^{n-1} \frac{1}{r_{s}}+\Delta^{2} \sum_{k=1}^{n-1} \frac{1}{b_{k}^{2}}\left(\prod_{s=1}^{k} r_{s}\right)\left(\prod_{s=k+1}^{n-1} \frac{1}{r_{s}}\right)\right]+\Delta^{2} \prod_{s=1}^{n-1} r_{s}}, \tag{34}
\end{equation*}
$$

where $i=1,2, \ldots, n$.

Having (12) and (34), we get
Lemman 2 [Case A]. The matrix $H=\left[h_{i j}\right]_{n \times l}$ defined in (11) satisfies the relationes:
if $n=1$, then

$$
H=\left[0 \ldots 0 \frac{\Delta}{d_{1}^{2}+\Delta^{2}}\right]_{1 \times l}
$$

if $n \geq 2$, then:
a) $h_{i j}=0$ for the indexes $j=1,2, \ldots, l-1$ and $i=1,2, \ldots, n$;
b) the entries $h_{i l}, i=1,2, \ldots, n$, are computed by the formula (34).

Intermediate formulae and relations obtained in the section and in the second part of this work [2] allow us to propose the following numerical algorithm to compute the matrices Z and H.
Algorithm Z, H/CaseA $(A, \Delta, n, l \Rightarrow Z, H)$
If $n=1$, then

$$
Z=\left[\frac{d_{1}}{d_{1}^{2}+\Delta^{2}}\right]_{1 \times 1}, \quad H=\left[0 \ldots 0 \frac{\Delta}{d_{1}^{2}+\Delta^{2}}\right]_{1 \times l}
$$

If $n \geq 2$, then

1. Compute the quantities r_{s} (see (20) from [2]):

$$
r_{s}=b_{s} / d_{s}, \quad s=1,2, \ldots, n-1 ; \quad r_{0}=r_{1}=1
$$

2. Compute the quantities $\alpha_{i}, i=1,2, \ldots, n-1$ (see (32) from [2]):

$$
\alpha_{n-1}=-r_{n-1} ; \quad \alpha_{i}=-r_{i} \alpha_{i+1}, \quad i=n-2, n-3, \ldots, 1
$$

3. Compute the quantities $\beta_{i}, i=1,2, \ldots, n-1$ (see (38) from [2]):

$$
\beta_{1}=-r_{1} ; \quad \beta_{i+1}=-r_{i+1} \beta_{i}, \quad i=1,2, \ldots, n-2 .
$$

4. Compute the quantities $\stackrel{\circ}{\mu}_{i}, i=1,2, \ldots, n$ (see (28) and (30) from [2]):

$$
\stackrel{\circ}{\mu}_{n}=1 ; \quad \stackrel{\circ}{\mu}_{i}=-r_{i} \stackrel{\circ}{\mu}_{i+1}+\frac{d_{n}^{2}}{d_{i}^{2}} \frac{1}{\alpha_{i}}, \quad i=n-1, n-2, \ldots, 1 .
$$

5. Compute the quantities $\stackrel{\circ}{V}_{i}, i=1,2, \ldots, n$ (see (34) and (36) from [2]):

$$
{\stackrel{\circ}{\nu_{1}}}_{1}=1 ; \quad \stackrel{\circ}{v}_{i+1}=-\frac{1}{r_{i}} \stackrel{\circ}{v}_{i}+\frac{\Delta^{2}}{b_{i}^{2}} \beta_{i}, \quad i=1,2, \ldots, n-1
$$

6. Compute the quantity $\stackrel{\circ}{t}$ (see (40) from [2]):

$$
\stackrel{\circ}{t}=d_{n}^{2} \stackrel{\circ}{v}_{n}+\Delta^{2} \alpha_{1}
$$

7. Compute the entries from the upper triangular part of the matrix Z (see (18)):
for the values $j=1,2, \ldots, n-1$:

$$
z_{i j}=\stackrel{\circ}{v}_{i}\left(\stackrel{\circ}{\mu}_{j} d_{j}+\stackrel{\circ}{\mu}_{j+1} b_{j}\right) / \stackrel{\circ}{t}, \quad i=1,2, \ldots, j
$$

8. Compute the entries from the lower triangular part of the matrix Z (see (27)):
for the values $j=1,2, \ldots, n-1$:

$$
z_{i j}=\stackrel{\circ}{\mu}_{i}\left(\stackrel{\circ}{v}_{j} d_{j}+{\stackrel{\circ}{v_{j+1}}}_{j}\right) / \stackrel{\circ}{t}, \quad i=j+1, j+2, \ldots, n
$$

9. Compute the entries of the last column of the matrix Z (see (29)):

$$
z_{i n}=d_{n} \stackrel{\circ}{v}_{i} \stackrel{\circ}{t}, \quad i=1,2, \ldots, n
$$

10. Compute the entries of the matrix H (see (33)):

$$
\begin{aligned}
& h_{i j}=0, \quad j=1,2, \ldots, l-1, i=1,2, \ldots, n \\
& h_{i l}=\stackrel{\circ}{\mu}_{i} \Delta / \stackrel{\circ}{t}, \quad i=1,2, \ldots, n .
\end{aligned}
$$

End

Direct calculations show that the numerical implementation of the algorithm $\mathbf{Z}, \mathbf{H} / \mathbf{C a s e A}$ requires $n^{2}+O(n)$ arithmetical operations. Thus the algorithm may be considered as an optimal one.

Case B. This case implies $n \geq 2$ and $d_{1}, d_{2}, \ldots, d_{n-1} \neq 0, d_{n}=0$ (see [2]).
The difference between the cases A and B consists only in the value of the quantity d_{n}. In the first case we have $d_{n} \neq 0$, while in the second one $d_{n}=0$. So we can use all the formulae and the expressions obtained in the previous section substituting $d_{n}=0$.

As a consequence of the Lemma 1 we get the following statement.
Lemman $\mathbf{3}$ [Case B]. For the matrix $Z=\left[z_{i j}\right]_{n \times n}$ defined in (10) we have:
a) $z_{i j}=0$ for the indeces $j=1,2, \ldots, n$ and $i=1,2, \ldots, j$;
b) for the indeces $j=1,2, \ldots, n-1$ and $i=j+1, j+2, \ldots, n$ the entries $z_{i j}$ are computed by the formula

$$
\begin{equation*}
z_{i j}=\frac{(-1)^{i+j+1}}{d_{j}} \prod_{s=j}^{i-1} \frac{1}{r_{s}} \tag{35}
\end{equation*}
$$

The computing process of the lower triangular part entries of the matrix Z can be organized as follows. Consider fixed value of the index j from the range $1 \leq j \leq n-1$. For $i=j+1$, from (35) we get

$$
\begin{equation*}
z_{j+1 j}=\frac{1}{d_{j} r_{j}}=\frac{1}{b_{j}} \tag{36}
\end{equation*}
$$

Further, for the subsequent values $i=j+2, j+3, \ldots, n$, again due to (35) the following relation holds:

$$
\begin{equation*}
z_{i j}=-\frac{z_{i-1 j}}{r_{i-1}} \tag{37}
\end{equation*}
$$

Consider the matrix H. Setting $d_{n}=0$, as a consequence of the Lemma 2 we obtain the following statement.

Lemma $\mathbf{4}$ [Case B]. For the matrix $H=\left[h_{i j}\right]_{n \times l}$ defined in (11) we have:
a) $h_{i j}=0$ for the indeces $j=1,2, \ldots, l-1$ and $i=1,2, \ldots, n$;
b) the entries $h_{i l}$ are computed by the formula

$$
\begin{equation*}
h_{i l}=\frac{(-1)^{i+1}}{\Delta} \prod_{s=1}^{i-1} \frac{1}{r_{s}}, \quad i=1,2, \ldots, n \tag{38}
\end{equation*}
$$

The computation of the last column of the matrix H can also be carried out by a recurrence relation. If $i=1$, then from (38) we have

$$
\begin{equation*}
h_{1 l}=\frac{1}{\Delta} \tag{39}
\end{equation*}
$$

One can easily obtain from (38), that for the values $i=2,3, \ldots, n$ we have

$$
\begin{equation*}
h_{i l}=-\frac{h_{i-1 l}}{r_{i-1}} . \tag{40}
\end{equation*}
$$

Having the formulae and relations obtained above, we can write the following algorithm to compute the entries of the matrices Z and H.
Algorithm Z,H/CaseB $(A, \Delta, n, l \Rightarrow Z, H)$

1. Compute the quantities r_{s} (see (20) from [2]):

$$
r_{s}=b_{s} / d_{s}, \quad s=1,2, \ldots, n-1 ; \quad r_{0}=r_{1}=1
$$

2. Compute the entries of the upper triangular part of the matrix Z (Lemma 3):

$$
\text { for the values } j=1,2, \ldots, n \text { : }
$$

$$
z_{i j}=0, \quad i=1,2, \ldots, j
$$

3. Compute the entries of the lower triangular part of the matrix Z ((36), (37)): for the values $j=1,2, \ldots, n-1$:

$$
z_{j+1 j}=1 / b_{j} ; z_{i j}=-z_{i-1 j} / r_{i-1}, i=j+2, j+3, \ldots, n
$$

4. Compute the entries of the matrix H (see Lemma 4 and (39), (40)):

$$
\begin{aligned}
& h_{i j}=0, \quad j=1,2, \ldots, l-1, i=1,2, \ldots, n \\
& h_{1 l}=1 / \Delta ; h_{i l}=-h_{i-1 l} / r_{i-1}, i=2,3, \ldots, n
\end{aligned}
$$

End

By direct calculations we find that the numerical implementation of the algorithm Z,H/CaseB requires $0.5 n^{2}+O(n)$ arithmetical operations. Thus, the algorithm may also be considered as an optimal one.

Case C. The case implies $n \geq 1$ and $d_{1}=d_{2}=\ldots=d_{n}=0$ (see [2]).
If $n=1$, the matrices Z and H have a very simple view:

$$
Z=[0]_{1 \times 1}, \quad H=\left[0 \ldots 0 \frac{1}{\Delta}\right]_{1 \times l}
$$

It obviously follows from (9), (10) and (11). The formulae for $n \geq 2$ are derived quite easily, using a technique, by which the cases A and B were examined. Therefore, let us formulate only the final results.

Lemman [Case C]. For the matrix $Z=\left[z_{i j}\right]_{n \times n}$ defined in (10) we have:
if $n=1$, then $Z=[0]_{1 \times 1}$;
if $n \geq 2$, then $z_{i i-1}=\frac{1}{b_{i-1}}, i=2,3, \ldots, n$, and $z_{i j}=0$ in the remaining cases.
Lemma 6 [Case C]. For the matrix $H=\left[h_{i j}\right]_{n \times l}$ defined in (11) we have: $h_{1 l}=\frac{1}{\Delta}$ and $h_{i j}=0$ in the remaining cases.

Due to the simplicity of the expressions for the entries of the matrices Z and H there is no need to write a special algorithm. We just point out that the computation of these matrices requires n arithmetical operations.

Concluding Remarks. Summarizing the preliminary results obtained in this paper as well as in previous papers [1, 2], in the next final part of the study we will give definitive solution to the Moore-Penrose inversions problem for singular upper bidiagonal matrices.

Received 12.01.2016

REFERENCES

1. Hakopian Yu.R., Aleksanyan S.S. Moore-Penrose Inverse of Bidiagonal Matrices. I. // Proceedings of the Yerevan State University. Physical and Mathematical Sciences, 2015, № $2, \mathrm{p} .11-20$.
2. Hakopian Yu.R., Aleksanyan S.S. Moore-Penrose Inverse of Bidiagonal Matrices. II. // Proceedings of the Yerevan State University. Physical and Mathematical Sciences, 2015, № 3, p. 8-16.

[^0]: * E-mail: yuri.hakopian@ysu.am
 ** E-mail: alexosarm@gmail.com

