PROCEEDINGS OF THE YEREVAN STATE UNIVERSITY

Physical and Mathematical Sciences

2016, Nº 1, p. 30-34

Mathematics

ON A CONJECTURE IN BIVARIATE INTERPOLATION

S. Z. TOROYAN *

Chair of Numerical Analysis and Mathematical Modeling YSU, Armenia

Denote the space of all bivariate polynomials of total degree $\leq n$ by Π_n . We are interested in *n*-poised sets of nodes with the property that the fundamental polynomial of each node is a product of linear factors. In 1981 M. Gasca and J.I.Maeztu conjectured that every such set contains necessarily n + 1 collinear nodes. Up to now this had been confirmed for degrees $n \leq 5$. Here we bring a simple and short proof of the conjecture for n = 4.

MSC2010: Primary 41A05; Secondary 14H50.

Keywords: polynomial interpolation, poised, independent nodes, algebraic curves.

1. Introduction. Denote by Π_n the space of bivariate polynomials of total degree not greater than *n*. We have

$$N:=\dim \Pi_n=\binom{n+2}{2}.$$

We call a set $\mathfrak{X}_s = \{(x_1, y_1), (x_2, y_2), \dots, (x_s, y_s)\}$ of distinct nodes *n*-poised, if for any data $\{c_1, \dots, c_s\}$ there exists a unique polynomial $p \in \Pi_n$ satisfying the conditions

$$p(x_i, y_i) = c_i, \quad i = 1, 2, \dots s.$$
 (1.1)

A necessary condition of *n*-poisedness is s = N.

A polynomial $p \in \Pi_n$ is called an *n*-fundamental polynomial for a node $A = (x_k, y_k) \in \mathfrak{X}_s$, if

 $p(x_k, y_k) = 1$ and $p(x_i, y_i) = 0$ for all $1 \le i \le s, i \ne k$.

We denote the *n*-fundamental polynomial of $A \in \mathfrak{X}_s$ by p_A^{\star} .

We shall use the same letter, say ℓ , to denote the polynomial $\ell \in \Pi_1$ and the line with an equation $\ell(x, y) = 0$.

Now consider an *n*-poised set $\mathcal{X} = \mathcal{X}_N$. We say, that a node $A \in \mathcal{X}$ uses a line ℓ , if ℓ is a factor of the fundamental polynomial p_A^* . We are going to use the following well known

^{*} E-mail: sofitoroyan@gmail.com

Proposition. Suppose that ℓ is a line and \mathfrak{X} is a set of n+1 nodes lying in ℓ . Then for any polynomial $p \in \Pi_n$ vanishing on \mathfrak{X} we have

$$p = \ell r$$
, where $r \in \Pi_{n-1}$.

It follows from the Proposition that at most n + 1 *n*-independent nodes can lie in a line.

We will make use of a special case of Cayley–Bacharach theorem (see, eg., [1], Th. CB4 [2], Prop. 4.1):

Theorem 1.1. Assume that the three lines ℓ_1, ℓ_2, ℓ_3 intersect another three lines $\ell'_1, \ell'_2, \ell'_3$ at nine different points. If a polynomial $p \in \Pi_3$ vanishes at any eight intersection points, then it vanishes at all nine points.

2. The Gasca–Maeztu Conjecture. Here we consider a special type of *n*-poised sets.

D e finition. We call an *n*-poised set \mathcal{X} GC_n-set, if each node $A \in \mathcal{X}$ has an *n*-fundamental polynomial which is a product of *n* linear factors.

Since the fundamental polynomial of an *n*-poised set is unique each of these lines passes through at least two nodes from \mathcal{X} not belonging to the other lines.

Next we bring the Gasca–Maeztu conjecture:

C on *j* e c t u r e [3]. Any GC_n -set contains n + 1 collinear nodes.

So far the conjecture was proved for the values $n \le 5$ (see [4]). In the case n = 4 this reduces to the following:

Theorem 2.1. Any GC_4 -set \mathcal{X} of 15 nodes contains five collinear nodes. To prove this, we shall assume from now that:

The set \mathfrak{X} is a GC₄-set, which does not contain five collinear nodes, (2.1) in order to derive a contradiction.

For each node $A \in \mathcal{X}$ the 4-fundamental polynomial is a product of four linear factors. In view of assumption (2.1) the 14 nodes of $\mathcal{X} \setminus \{A\}$ are distributed in the four lines used by *A* in two possible ways: 4+4+4+2 or 4+4+3+3. Accordingly, we can represent p_A^* in two forms:

$$p_A^{\star} = \ell_{=4}\ell_{=4}^{\prime}\ell_{=4}^{\prime}\ell_{\geq 2}^{\prime}, \qquad p_A^{\star} = \ell_{=4}\ell_{=4}^{\prime}\ell_{\geq 3}\ell_{\geq 3}^{\prime}. \tag{2.2}$$

The lines with = k in the subscript are called *k*-node lines and pass through exactly *k* nodes. The lines with $\ge k$ in the subscript pass through *k* nodes and possibly also through some other, already counted nodes, which are the intersection points with the other lines.

2.1. *Lines Used by Several Points.* We start with two lemmas from [5] (see Lemmas 2.5 and 2.6). For the sake of completeness we state their proofs.

Lemma 2.1. Any 2 or 3-node line can be used by at most one node of \mathcal{X} .

Proof. Assume to the contrary that $\tilde{\ell}$ is a 2 or 3-node line used by two points $A, B \in \mathcal{X}$. Consider the fundamental polynomial p_A^* of A. It consists of the line $\tilde{\ell}$ and three more lines, which contain the remaining ≥ 11 nodes of $\mathcal{X} \setminus (\tilde{\ell} \cup \{A\})$ including B. Since there is no 5-node line, we get

$$p_A^{\star} = \tilde{\ell}\ell_{=4}\ell_{=4}\ell_{\geq 3}.$$

First suppose that *B* belongs to one of the 4-node lines, say to $\ell'_{=4}$. We have that $p_B^* = \tilde{\ell}q$, where $q \in \Pi_3$.

Notice that q vanishes at 4 nodes of $\ell_{=4}$, therefore, according to Proposition

 $p_B^{\star} = \tilde{\ell}\ell_{=4}r$, where $r \in \Pi_2$.

Now *r* vanishes at 3 nodes of $\ell'_{=4}$ (i.e. except *B*). Therefore, again from Proposition we get that *r* vanishes at all points of $\ell'_{=4}$ including *B*. Hence p_B^* vanishes at *B*, which is a contradiction.

Assume that *B* belongs to the line $\ell_{\geq 3}$. Then *q* vanishes at 4 nodes of $\ell_{=4}$, 4 (≥ 3) nodes of $\ell'_{=4}$ and at least 2 nodes of $\ell_{\geq 3}$. Therefore, we get from Proposition as above

$$p_B^{\star} = \ell_{=4} \ell_{=4} \ell_{\geq 3} \ell$$
, where $\ell \in \Pi_1$.

Hence again p_B^{\star} vanishes at *B*, which is a contradiction.

Lemma 2.2. Any 4-node line $\tilde{\ell}$ can be used by at most three nodes of \mathfrak{X} . If three nodes use $\tilde{\ell}$, then they share two more 4-node lines.

Proof. Assume that $\tilde{\ell} = \tilde{\ell}_{=4}$ is a 4-node line and is used by two nodes $A, B \in \mathcal{X}$. Consider the fundamental polynomial p_A^* of $A \in \mathcal{X}$. It consists of the line $\tilde{\ell}$ and three more used lines containing the remaining 10 nodes of $\mathcal{X} \setminus (\ell \cup \{A\})$ including *B*. Now there are two possibilities:

$$p_A^{\star} = \tilde{\ell} \ell_{=4} \ell_{=4}' \ell_{\geq 2}, \tag{2.3}$$

$$p_A^{\star} = \ell \ell_{=4} \ell_{\geq 3} \ell_{>3}. \tag{2.4}$$

Consider first the case (2.3). We readily get, as in the proof of Lemma 2.1, that *B* does not belong to any of the 4-node lines. Hence *B* must belong to the line $\ell_{\geq 2}$. The same statement is true also for the third point *C* that may use $\tilde{\ell}$. Clearly, there is no room for the fourth node in $\ell_{\geq 2}$. Thus, Lemma is proved in this case. Notice that in this case p_B^* (p_A^*) uses the lines $\tilde{\ell}, \ell_{=4}, \ell'_{=4}$ and the line ℓ_{AC} (ℓ_{AB}), where ℓ_{AC} is the line passing through *A* and *C*. Therefore, the nodes *A*, *B*, *C* share three 4-node lines.

Now consider the case when p_A^* is given by (2.4). As above *B* does not belong to any of the 3-node lines. Hence, *B* must belong to the line $\ell_{=4}$. We have also

$$p_B^{\star} = \ell \alpha_{=4} \alpha_{\geq 3} \alpha_{\geq 3}^{\prime}. \tag{2.5}$$

Moreover we have that the node A in its turn belongs to the line $\alpha_{=4}$.

Now let us verify that the nodes *A* and *B* do not share any line except $\hat{\ell}$. Indeed, $\ell_{=4}$ and $\alpha_{=4}$ are the only lines containing *B* and *A* respectively. Thus, they are not among the possibly coinciding lines. Without loss of generality assume to the contrary that $\ell'_{\geq 3} \equiv \alpha'_{\geq 3}$.

Thus, we have

$$p_B^{\star} = \tilde{\ell} \ell_{>3} q$$
, where $q \in \Pi_2$.

Then, in view of Eq. (2.4), q vanishes at 3 nodes of $\ell_{\geq 3}$ and at least at 2 nodes of $\ell_{=4}$ (i.e. except *B* and a possible secondary node of $\ell'_{\geq 3}$). Therefore, from Proposition we get that q vanishes at all points of the lines $\ell_{=4}$ and $\ell_{\geq 3}$ including *B*. Hence p_B^* vanishes at *B*, which is a contradiction.

Thus the triples of the used lines $\ell_{=4}$, $\ell'_{\geq 3}$, $\ell_{\geq 3}$ and $\alpha_{=4}$, $\alpha'_{\geq 3}$, $\alpha_{\geq 3}$ intersect at exactly 9 nodes of $\mathfrak{I} := \mathfrak{X} \setminus [\tilde{\ell} \cup \{A, B\}].$

If a third node C uses $\tilde{\ell}$, then we have that $C \in \mathfrak{I}$ and p_C^* must vanish at eight nodes of \mathfrak{I} , but, by Theorem 1.1, p_C^* vanishes at C too, which is a contradiction. Therefore, the 4-node line in this case can be used at most twice.

C or ollary. Suppose ℓ is a 4-node line and three nodes $A, B, C \in \mathfrak{X} \setminus \ell$ use a line $\tilde{\ell}$. Then *l* is among the three lines used by *A*, *B* and *C*.

Indeed, the 12 nodes of $\mathfrak{X} \setminus \{A, B, C\}$ lie in the three used lines.

With the following Lemma we strengthen the Lemma 2 in [6].

Lemma 2.3. If a node $A \in \mathcal{X}$ uses a 4-node line ℓ , then there are two more nodes in \mathcal{X} using it.

P roof. Denote the four lines joining the node A with the 4 nodes on ℓ by $\ell_1, \ell_2, \ell_3, \ell_4$. Consider any node from $\mathfrak{X} \setminus (\ell \cup \{A\})$. The 4 lines used by it pass through five nodes in $\ell \cup \{A\}$. Therefore, one of lines passes through 2 nodes of the five and, therefore, coincides with one of the lines $\ell_1, \ell_2, \ell_3, \ell_4$ or ℓ . Thus, each of 11 nodes of $\mathfrak{X} \setminus \ell$ uses one of the lines $\ell, \ell_1, \ell_2, \ell_3, \ell_4$. Hence, there are at least three nodes in $\mathfrak{X} \setminus \ell$ using the same line $\tilde{\ell}$ among the mentioned 5. In view of Corollary $\tilde{\ell}$ is used by the same triple of nodes. Node A is among the three nodes from Lemma 2.2.

R e m a r k. Notice that $\tilde{\ell} \equiv \ell$. Indeed, $\tilde{\ell}$ is used by *A* and, therefore, it cannot coincide with any ℓ_i , i = 1, 2, 3, 4, Also, each of the lines $\ell, \ell_1, \ell_2, \ell_3, \ell_4$ is used by exactly 2 nodes from 10 of $\mathfrak{X} \setminus (\ell \cup \{A\})$. Therefore, in view of Lemma 2.2, each of the lines $\ell_1, \ell_2, \ell_3, \ell_4$ is a 4-node line.

2.2. Proof of Theorem 2.1. It follows from Lemmas 2.2 and 2.3, that all the fundamental polynomials of \mathcal{X} have the form 4 + 4 + 4 + 2, i.e. we have the first case of Eq. (2.2).

Suppose a node *A* uses a 4-node line ℓ and the four lines $\ell_1, \ell_2, \ell_3, \ell_4$ pass through *A* and the four nodes in ℓ , as in the proof of Lemma 2.3. The line ℓ is used by two more nodes $B, C \notin \ell$ (Lemma 2.3). The nodes A, B, C share two more 4-node lines, which we denote by ℓ' and ℓ'' . Let us verify that the nodes *B* and *C* do not lie in the lines $\ell_1, \ell_2, \ell_3, \ell_4$. Indeed, suppose conversely, say, the node *B* is in ℓ_1 . Then, in view of Remark, *C* does not use any of the 4-node lines $\ell_1, \ell_2, \ell_3, \ell_4$, while from the Proof of Lemma 2.2 we have that *C* uses the line passing through *A* and *B* and thus coinciding with ℓ_1 .

Therefore, 12 nodes of $\mathfrak{X} \setminus \{A, B, C\}$ belong to the lines $\ell_1, \ell_2, \ell_3, \ell_4$. On the other side, these 12 nodes belong to the lines ℓ, ℓ' and ℓ'' .

Now, we may conclude that 12 nodes of $\mathfrak{X} \setminus \{A, B, C\}$ are the intersection points of the 4 lines $\ell_1, \ell_2, \ell_3, \ell_4$ with the 3 lines ℓ, ℓ' and ℓ'' .

Finally consider the polynomial $p = \ell_1 \ell_2 \ell_3 \ell_4$. As the fourth degree polynomial p vanishes at all the nodes, but B and C, it should be a linear combination of the fundamental polynomials of these two nodes. Both these fundamental polynomials vanish on the lines ℓ, ℓ', ℓ'' , so this should be true also for p, which is a contradiction.

REFERENCES

- Eisenbud D., Green M., Harris J. Cayley–Bacharach Theorems and Conjectures. // Bull. Amer. Math. Soc., 1996, v. 33, p. 295–324.
- 2. Hakopian H., Jetter K., Zimmermann G. Vandermonde Matrices for Intersection Points of Curves. // Jaen J. Approx., 2009, v. 1, p. 67–81.
- 3. Gasca M., Maeztu J. I. On Lagrange and Hermite Interpolation in ℝ^k. // Numer. Math., 1982, v. 39, p. 1–14.
- 4. Hakopian H., Jetter K., Zimmermann G. The Gasca–Maeztu Conjecture for *n* = 5. // Numer. Math., 2014, v. 127, p. 685–713.
- 5. Bayramyan V., Hakopian H., Toroyan S. A Simple Proof of the Gasca–Maeztu Conjecture for *n*=4. // Jaén J. Approx. Theory, 2015, v. 7, p. 137–147.
- Busch J.R. A Note on Lagrange Interpolation in ℝ². // Rev. Un. Mat. Argentina, 1990, v. 36, p. 33–38.