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In the paper we consider the problem of the transmission of limited sound
beams. The transmission of such beams is described by a nonlinear partial
differential equation. In the paper we solve this equation by the lattice-
characteristics method. Some numerical results are obtained for a special case.

MSC2010: 65F20.
Keywords: sound waves, difference schemes.

1. Introduction. In the paper we consider the non-linear problem of the
limited sound beams transmission. The interest toward this topic is explained by
the possibility of its wide practical application. The transmission of such beams is
described by a non-linear equation presented in [1,2]. Since of the absence of regular
methods of solving of nonlinear partial differential equations it is not possible to ob-
tain the general solution of non-linear acoustics equation. In the paper this equation
is solved by the finite difference schemes method [3] in a three dimensional domain.

2. A Numerical Solution of the Limited Narrow Sound Beams
Transmission Problem. The equation of non-linear acoustics is convenient to present
in non-dimensional variables. In [4] it is brought to the following form:

N0
∂ 2ρ2

∂θ 2 −
∂ 2ρ

∂θ∂ z
+B∆⊥ρ = 0, (1)

where R =
√

x2 + y2 and ∆⊥ =
1
R

∂

∂R

(
R

∂

∂R

)
is the Laplace operator, which affects

in the plane orthogonal to the direction of the beam transmission. We will seek for
the solution of this equation in the following domain:

G3 (0 6 θ 6 2π, R 6 R0, 0 6 z 6 Z),
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where R0 and Z are real numbers identifying the boundary of the domain, in which
the sound beam spreads.

Let us require that the solution ρ(θ ,R,z) satisfies the following initial and
boundary conditions:

1. ρ|z=0 = e−R2
sinθ ; (2)

2. ρ|R=0 = |ρ|R=R0
= 0;

3.ρ(θ ,R,z) is a 2π-periodic function of θ .

Next, let us require that the initial function satisfies the following boundary condition:
2π∫
0

F(θ ,R)dθ = 0, F(θ ,R) = exp−R2
sinθ .

Before solving the problem (1), (2), we first consider the case when B = 0.
Then we obtain a quasi-linear first degree equation

∂ρ

∂ z
−2N0ρ

∂ρ

∂θ
= 0, (3)

where ρ is a 2π-periodic function satisfying the initial condition

ρ|z=0 = F(θ). (4)

To solve this problem, let us make use of the lattice characteristics method [5].
It is known that the Eq. (3) can have non-smooth solutions, which in acoustics and
gas dynamics are called shock waves. Concerning the solving Eq. (3) by a numerical
method, let us state the following. As far as the solution is a smooth function, to find
it one can apply a wide class finite difference schemes methods.

In the case when the solution is not a smooth function, it is necessary to apply
some special methods, which take into account the properties of the solution at the
point of discontinuity. An example of a such method is one based on the introduction
of the concept of artificial viscosity. Being very small, it preserves the characteristic
properties of the solution by making it a smooth function. For solving such equation
numerically one can apply finite difference scheme of general kind. The method of
artificial viscosity has number of drawbacks, one of which is the wave front blurring.

The methods of characteristics and divergent finite difference schemes are
solving this type of equations by taking into account the discontinuity. The
divergent schemes method is based on the properties of the solution, which follow
from the integral conservation law.

Let F(θ ,z) and ρ(θ ,z) be 2π-periodic functions of θ . Let us denote F(θ ,z)
simply by F(θ). Now, by extending periodically the solution and the initial function,
consider. The problem in the domain G2 with G2 = (−∞ < θ < ∞, 0 6 z 6 Z).

Let us introduce the following lines:
∂θ

∂ z
= 2N0ρ, (5)

which we call characteristics for the Eq. (3). Along with the direction of each
characteristic θ = θ(z) the solution ρ(θ ,z) can be considered as a function ρ(θ(z),z)
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of variable z solely. Then the solution is constant along the direction of the
characteristic

∂ρ

∂ z
=

∂ρ

∂ z
+

∂ρ

∂θ

∂θ

∂ z
=

∂ρ

∂ z
−2N0ρ

∂ρ

∂θ
= 0.

By taking into account (5) and the fact that the solution is constant along the direction
of the characteristic, we come to the conclusion that the characteristics are the lines
θ =−2N0ρz+θ0, where θ0 is the x-coordinate of the point (0,θ0), from which takes
start the characteristic with the slope −2N0ρ with respect to the z-axis, and ρ is
a constant that equals F(θ0) : ρ = F(θ0).

Thus, the directions of characteristics and the value of the solution, which
spreads along the characteristics without a change in the domain G2, are determined
according to the initial function F(θ).

In the case of a smooth solution the characteristics ρ(θ ,z) do not intersect.
In the opposite case each characteristic brings into the point of intersection its value,
in which case the solution becomes discontinuous.

If the function F(θ) is monotonically decreasing along with the increase θ ,
then the angle between the characteristic and the z-axis is increasing and the
characteristics are diverging. But along with the increase of F(θ) the characteris-
tics are coming closer and intersecting, regardless the fact that the initial function:
F(θ) is smooth. We are arriving in this way to a solution with discontinuities.

Suppose that ρ(θ ,z) is a continuously differentiable solution for the Eq. (3).
Let us integrate the Eq. (3) along with some domain G∗2 ⊂G2, the boundary of which
is Γ∗. By using the Green formula, we obtain∫

G∗2

(
∂ρ

∂ z
−2N0ρ

∂ρ

∂θ

)
dθ dz =−

∫
Γ∗

ρdθ +N0ρ
2dz,

which implies ∫
Γ∗

ρdθ +N0ρ
2dz = 0. (6)

Thus the solution of the continuously differentiable Eq. (3) satisfies the integral
Eq. (6). Let us extend the set of solutions of the differential Eq. (3) by a piecewise
differentiable function and call it a generalized solution. This generalized solution
is satisfying the Eq. (6) with arbitrary Γ∗ ∈ G2, which is the integral form of the
conservation law. Notice that to get a unique solution it is necessary that certain
condition, like the entropy increase low, holds on the boundary of the domain.

If on some line θ = θ(z) the general solution has a discontinuity by remaining
continuous from the right and left of the breaking point then the Eq. (4) implies the
following equality

∂θ

∂ z
=−N0

(
ρleft +ρright

)
. (7)

In case of other conservation law the slope of the line would be different.
To distinguish the generalized solution for the differential equation that prescribes
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correctly the route of the real process it is necessary to follow physical conservation
laws,which yield this equation.

To solve the Eqs. (3),(4) by the difference schemes method, consider the lattice
Gh

2, which is a union of two lattices (Fig. 1):
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Fig. 1. Gh
2 lattice:

Gh,1
2 (θm,zn; m = 0,±1, . . . ,N1; n = 0,1,2, . . . ,N2),

Gh,2
2 (θm+0.5; zn+0.5; m = 0,±1, . . . ,N1−1; n = 0,1,2, . . . ,N2−1),

θp = phθ , zq = qhz, hθ = 2π/N, hz = Z/N2.

Let us define lattice functions on Gh
2 : ρn

m on Gh,1
2 and ρ

n+0.5
m+0.5 on Gh,2

2 which are
2π-periodic. The lattice Gh

2 is a simplest rectangle with the center {θm,zm+0.5} and
length of sides equal to hθ and hz, which are parallel to the axes θ and z respectively.
The boundary of Gh

2 is Γh.
By replacing the integral preservation law by the mean rectangles quadrature

rule, we are arriving to the difference formula

ρn+1
m −ρn

m

hz
−N0

(
ρ

n+0.5
m+0.5

)2−
(
ρ

n+0.5
m−0.5

)2

hθ

= 0. (8)

By considering an arbitrary domain Gh
2 consisting of elementary rectangles,

which are touching each other and by summing up the type (8) equations for each
rectangle, we would get the discrete analog of the conservation law for that domain.

In order to use this difference scheme for passing from layer to layer, we
need to determine beforehand the values ρ

n+0.5
m+0.5 by taking use of the discontinuity

decadence law [4].
3. The Solution of the Problem for the Three Dimensional Space. Now

consider the problem (1), (2). Let us construct the following lattice in the domain
under discussion:

Gn
3 = Gh,1

3 (θm,Rk,zn)∪Gh,2
3 (θm+0.5,Rk,zn+0.5)∪Gh,3

3 (θm+0.5,Rk,zn).
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Let us define there elementary volume.
In Fig. 2 by points are designated the nodes of the lattice Gh,1

3 , by crosses are
designated the nodes of the lattice Gh,2

3 and by rings are designated the nodes of the
lattice Gh,3

3 . To solve the problem (1), (2) by the difference scheme method, let us
take in the θ -axis N points, in R-axis N1 points and in z-axis N2 points. Set also B = 1
and N0 = 1.
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Fig. 2. The elementary lattice Gn
3 .

Let us define the lattice function ρn
m,k. The initial conditions look like

ρ
n
m,k = Fm,k,

hθ =
2π

N
, Rk = khR, hR =

R0

N1
,

zn = hzn, hz =
Z
N2

.

Let us replace the Eq. (1) by the following difference equation:(
ρ

n+0.5
m+0.5,k

)2
−2
(

ρ
n+0.5
m−0.5,k

)2
+
(

ρ
n+0.5
m−1.5,k

)2

h2
θ

−

− 1
hz

(
ρ

n+1
m,k −ρ

n+1
m−1,k

hθ

−
ρn

m,k−ρ
n+1
m−1,k

hθ

)
+ (9)

+
1
hR

(
RR+0.5

ρ
n+1
m,k+1−ρ

n+1
m,k

hR
−Rk−0.5

ρ
n+1
m,k −ρ

n+1
m,k−1

hR

)
= 0,

where ρ0
m,k = Fm,k, ρ

n+1
m,N1

= 0.
As in the bivariate case the values of ρn+0.5 are determined by the discontinuity

decadence law.
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Fig. 3. Three-dimensional domain, in which we seek for a solution of equation.
The initial and n-th layers are shaded.

Let us denote

Φ
n
m,k =

ρn
m,k−ρn

m−1,k

hθ

+hz

(
ρ

n+0.5
m+0.5,k

)2
−2
(

ρ
n+0.5
m−0.5,k

)2
+
(

ρ
n+0.5
m−1.5,k

)2

h2
θ

,

m = 0,1, . . . ,N−1; k = 0,1, . . . ,N1−1; n = 0,1, . . . ,N2−1.

Then the system (9) will take the form:

−

(
ρ

n+1
m,k −ρ

n+1
m−1,k

hθ

)
+

+hz

(
Rk+0.5

ρ
n+1
m,k+1−ρ

n+1
m,k

hR
−Rk−0.5

ρ
n+1
m,k −ρ

n+1
m,k−1

hR

)
=−Φ

n
m,k. (10)

Since there are 3 unknowns in each equation of the system (10), therefore, the
matrix of the system is three-diagonal. Accordingly, for this special system the Gauss
method for three-diagonal matrix is used [6].

To solve the system (10) with the mentioned method, we bring first the
equations to the following form:

hz

h2
R

Rk−0.5ρ
n+1
m,k−1−

ρ
n+1
m,k

hθ

+
ρ

n+1
m−1,k

hθ

− hz

h2
R

Rk+0.5ρ
n+1
m,k −

− hz

h2
R

Rk−0.5ρ
n+1
m,k +

hz

h2
R

Rk+0.5ρ
n+1
m,k+1 =−Φ

n
m,k.

From here we get

hz

h2
R

Rk−0.5ρ
n+1
m,k−1−

(
1

hθ

+
hz

h2
R

Rk+0.5 +
hz

h2
R

Rk−0.5

)
ρ

n+1
m,k +

+
1

hθ

ρ
n+1
m−1,k +

hz

h2
R

Rk+0.5ρ
n+1
m,k+1 =−Φ

n
m,k. (11)

By assuming that we have the vlaues ρn
m,k in the n-th layer, we get first the

intermediate values ρ
n+0.5
m+0.5,k by using the discontinuity decadence law.
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Fig. 4. Grapf of function ρ: a) initial wave; b) obtained wave on z = 1;
0 6 θ 6 2π, 0 6 R 6 2.

Then on each of the k-th line of the (n + 1)-th layer we are applying the
Gauss method for three-diagonal matrices. Numerical calculations were conducted
for R0 = 2 and z ∈ [0;1]. We take in the θ , R and z axis N = 20, N1 = 10 and N2 = 20
points respectively. The obtained results we present in form of three-dimensional
graph (Fig. 4).

As it follows from the results, that initial wave deformes, which is typical for
sound waves.
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