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We study the Hilbert boundary value problem in the half-plane, when the
boundary function is continuous on the real axis. It was proved that
this problem is Noetherian and the solutions of the corresponding homogeneous
problem are determined in explicit form.
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Introduction. Let [T* = {x+iy : y = 0} be the upper and lower half-planes
respectively, and A is the class of analytic in IT" JIT~ functions & satisfying the
condition

|P(z)| < BZ", |[Imz] >y >0. (1)

Here m is any natural number and B is a constant, in general dependent of y. We say
that the function f is continuous on the real axis or f € C(R), if f is continuous on
(—oo,40), the limits f(4eo) exist and f(+o0) = f(—o0) = f(c0).

Hilbert boundary value problem is considered. Analytic function ® from the
class A is determined, which satisfies the following boundary condition

Jim [0 (x-+ ) = a(0)® (v= i) = () = O @)

where ®* are the restrictions of the function ® on IT* respectively, where f is a

given function from the class C(R). We suppose that the function a(x) # 0 for
x €R, a € C*(R), that is a satisfies the Holder condition for any finite point x € R,
the limits a(+oo0) exist and we have the conditions:

o

1 1
i+x1 i+x

a(+o) =a(—o0)=1; a(x;)—a(x)|<C
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The Problem (2)) in the circle and for the bounded domains were investigated
in the [[1-4]. The Hilbert problem in L' space was considered in [5,6].
Further, if ®(z) € A, we denote ®* the restrictions of the function @ in the
half-planes IT* respectively and if & are analytic in IT*, then we denote
dT(z), zell'
q) — Y Y
(2) { ® (z), zell.

Let 1 be an index of the function a : 4 = inda(x), x € R. Then we can represent the

o S*()
coefficient a in the form a(r) = () t € R, where
1 [t 1Ina;(r)dt
St(z) = —/ 2AVEL et 3
@) eXp{Zni o 1—2Z ‘ ©)
_ z+i\* 1 [+ Ina(t)dt _
S ()= — [ e eIl 4
©) (z—i) Xp{Zm’./_w i—z J ° ’ )
t+i\* —
and a; (1) = P a(t). If f € C(R), then we denote
—i
(z+1)S(2) /*"" f@) dt
K = . . 5
(f:2) 2mi e G+)ST(M) 1—2 ©)
Auxiliary Results.
(04
Lemma 1. Fory>0 wehave |ST(x+iy) —a(x)S™ (x—iy)| < |x4)—)i\2°"

where A > 0 is a constant.
Proof. Using (3) and @), we get
ST (x+iy) —a(x)S™ (x—iy)| <
1 [+ ylna(t)dt

SAy|S+(x+iy)|‘1—eXp (—ﬂ/m iy S +lInay(x ))‘

The functions S*(z) and (S*(z))~! are bounded in IT*, and if |z| < M, then
|1 —€*| < Alz| (A may depend on M). Therefore, we get

+oo 20 _
9| <C/ ylx+i |lna1( ) —Inay(x)|dt <
—x)24y?

e iPEIST (x+iy) — a(x)S

c/ Y|+ *|e — x| < C(L(x,y)+h(x,y)),

o [tH1|%((t —x)>+?)

+o0 _ o +oo _ 20
y|t —x|%dt / y|t — x|*%dt
here I;(x, :/ s, I = , then
where D)= | e PO L e )
I(x,y) = 1} (x,y) +1{ (x,y), where
/ vt —x|%dt " / y|t —x|%dt
= [ Ay [ e
1) i<y (E=X)%+)? 1(07) i—af>y (£ —x)2 42
Taking into account the inequalities
/ +y |y|1+adt " y|t|adt
nei<|[TESE —ae e | [ TS =g
-y Y >y 1
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we get |1 (x,y)| < Cy* and similarly |l (x,y)| < Cy%, where the constant C doesn’t

depend on x, y. O
It must be mentioned that
S+ . S7 _ .
Ll).))k—a(x)()_ciof)k <consty, k>1. (6)
(x+iy+1i) (x—iy+i)

This inequality can be proved by using Lemma 1 as follows:
IST(x+iy) (x+iy+i)* —a(x)S (x—iy)(x—iy+i)f| <
< |(e+iy+i)!|IST(x+iy) —a(x)S™ (x—iy)|+

. .\ k
1— (xz_yﬂ,) <
X+i1y+1 B

<leet iy (14 ) —as (ol 22 ) <

H iy + ) la(x)S™ (x— i)

<A il 4y e+ i),

Then we assume f € C(R) and

CSt(x+iy)(x+iy+i) [t (1) vt

Li(f.xy) = 27 BT R e e (7)
b(f,x,y) = ST (x+iy)(x+iy+i) —;;T(;C)S_(x—iy)(x— iv+i)

L) dr ®)

oo STt +i) t—x+iy

Lemma 2.Let f € C(R). Then ||I;(f,x,y)|]lc < M| fllc (M is a constant).
Proof. As ST (z) is bounded, we get

ST (xtiy) [T f) (x4 iy +0) ydt

W) = | TS G+ G=xP 4
_ Statiy) (e £ ydr
27 Jee ST(t) (t—x)2 42
ST(x+iy) [T f(O)(x+iy+i)—(t+1i)) ydt _
+T e S+(l)(l‘—|—l) ’ (t—x)2+y2 _Ill(faxay)+112(fvx7y)‘

It is clear that ||[I] (f,x,y)|lc < Mi||f|lc and since |(x+iy+i) — (t +1i)| =
~+oo
. . ydt
= |t —x — iy, we obtain [IF(f,xy)llc < MszHC/

e [t —x 1y
e ydt e dt
Y Y
<ol [ 2 [T <l
Lemma 3. Let f € C(R). Then ||L(f,x,y)|lc <M||fl|lc (M is a constant).
P roof. Taking into account the equality
ST(x+iy)(x+iy+i) —a(x)S™ (x—iy)(x—iy+i) =

= (x+) (ST (x+iy) —a(x)S™ (x—iy)) +iy(ST(x +iy) +a(x)S™ (x—iy))

IN
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and Lemma 1, we get

\L(f,x,y)| < P

o

y
_l_i|2(x71

e () dt
o ST+ T—xtiy|
f(t) dt
0t +i) t—x+iy

. + e f(0) dr
Since |S™(z)| <const for y > 0 and H/—w SOGTD —xth . <M|flle. DO

Lemma 4. Let f € C(R). Then K(f,z) is a solution of (2), where K(f,z)
is defined by (5).

Theorem 1. Let fcC(R)and ®(z) €A is the solution of (2). Then:

a) in the case u > —1 the function ®(z) can be represented in the form
(z+10)S(@z) [t f() dt

2t Jow STO)t+i) 1—2

where G is a polynomial of order p (1 > 0),and G(@) =0if u =0o0r u = —1;

b) in the case u < —1 ®(z) is represented in the form (9), where G = 0
and the function f satisfies the orthogonality conditions

e f() di
. =0, k=12,...,—u—1.
e STQ) T S TH
Proof. a)lf u > 0, then we will denote
O (r+iy) — ()@ (x— iy) = (x). (10)

Multiplying (10) by (x+i)~! and denoting

t(z+i
¢;’(z)=m, ZeITt, @) () =

wls i) s - | g

D(z) = +(z+1)S(z)G (Zlﬂ) ,zeIlI™, (9)

P (z—1iy)
S=(2)(z+1i)’
- H(x)
d(x) - =t
y ()= 0= S
In the case u > —1, the function ®; (z) has a pole of order u — 1 at the point
z = —i. This equality can be represented in the form

fx)

zelIl™, weget

Oy (x) =Dy () = o3 +Gy(x), (11)

g () (x +1)
where Gy(z) is the principal part of Loran’s series for @/ (z) at the point
: Ai(y) A1 (y) . _

=—-i: G = e — d P;(z) =@ — Gy(2).
7= —i (@) =t = v (2) = Py (2) — Gy(2)

The solution of (11) can be written in the form

I [t filt dt

@5 (2) = o +R(2)+6(2)- (12)

T2 . ST(O)(1+i0) t—2
We have to prove that an unknown polynomial P,(z) = 0.
ST (x+iy) —a(x) P (x—iy) = i (f,x,y) = L(f,x,)+

—|—(x—f—ly—|—l)5+(x+ly>G <x+ly+l) — (x—iy+i)S+(x—iy)G <x—zy—|—l> +
+(x iy +i)ST(x+iy)Py(x+iy) = (x =iy +i) ST (x — iy) P(x — iy) = fy(x).
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Taking into account Lemmas 1-3 and (6), we get P,(z) = 0 for f, € C(R).
Taking the limit of (12) as y — +0, we get

C (z+)SH@) [t f() dt
®(2) = 27i e STO)(+10) t—2

where G(z) is the principal part of Loran’s series for @ (z)(S~(z)(z+i))~!

+ (z+1)S*(2)[P(z) + G(2)],

b) In the case p < —1 the function @} (z) is holomorphic in IT~, therefore,
the principal part of it’s Loran’s expansion is zero, i.e. G(z) = 0. On the other hand,
@ (2)(S~(z)(z+1i))"" has zero of order |u — 1| at the point z = —i. Consequently

e f(t dt
- 5{1(()) L =0, k=1,2,...,—u—1. O
Theorem 2. Let f € C(R). Then
a) if u > —1, then ®(z) the general solution of (2) is represented in the form
z4+0)S(z) [T t dt ) 1
et 05 [ S+({)<(t)+ S S (Hl) eI, (13)
where G is a polynomial of order p if 4 > 0, and G(w) =0if u =0o0r u = —1;
b) otherwise (2) is solvable if and only if the function f satisfies the conditions
e f(1) dt
—oo ST(1) (r40)kH]
The general solution can be represented by (13), where G(z) = 0.

Proof. Let f,(x) € C*(—o0,+00) be a sequence of finite functions such that

,}52, || fu(x) = f(x)||c = 0. For arbitrary n we denote

f(x) satisfies the conditions

D(z) =

=0, k=1,2,..,—u—1.

(@+0)S(2) (= fult) di . 1 +
D,(z)=——F7= . Sz)G| — ), zeII™.
n(2) 2w e ST =z TEHISRG 5 ) 2
We will prove that
lim {|®, (x+iy) — a(x)®, (x—iy) = fu(x)[lc = 0. (14)
y—=+0
From the formula of Sokhotski—Plemelj we get

D (x+iy) —a(x)®, (x—iy) = fu(x), x€(-A,A). (15)

If |x| > A, using the representation
@, (x+iy) —a(x)®, (x—iy) =

CSTx4iy)(x+iv+i) [ fulr) ydt n
- 27 e STt i) (1—x)2+)?
+S+(x+iy)(x+iy+i)— a(@¥)S"(x—iy)x—iy+i)
2mi
W a +J(x,y),

oo ST(O)(t+0) t—x+iy

0 +( ~(x—i
where J(x,y) = Z {S (x+1y) — S (x l),])k},weget

= (x+iy+ik  (x—iy+i)

ﬁlaX\qﬁ +ty)—a(X)<Pn( —iy) = fa(®)] SN (xy) +h(x,y) +I3(x,y),
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o §* (et ) ) [T A d
= X+iy)(etiy+i) [T ) ydt
Jl(xay) _|I}|lg§ 2mi oo S+(t)(t+l) (t_x)2—|—y2 fn(x)’,
J2(x,y) = max STt ) (x iy + ) —a(?‘)Sf(X—iy)(x—iy-i-i) X
lz[>A 27i

X

oo f(1) dt
o S+(t)(t+i)'t—x+iy"

J(x,y) = max‘(x+iy+i)S+(x+iy)G(

2| >A x+iy+i>

ool
(x—iy+i)S" (x—iy) P
Taking into account the relation, f,(x) = 0, for |x| > A, we get the estimation

A 10 ydt
i (x,y) SCrggﬁ{y\x+ly+’|/w ‘S+(t)(t+i) ‘ (r—x)2+y2} :

e dt ylx+iy+i
<C max{ x+1 +i/ 7}:C max{i},
anHC|Z|>A ylx+iy+if e (—x)2 1||fn||C|z‘>A X2 —A2]

which means that J; (x,y) tends to zero as y — +0.
Using the scheme of the Lemma 3 proof, we get that J>(x,y) vanishes when y — +0.
Thus, taking into account (6) for J3(x,y) and equality (15), we get (14).

Using Lemmas 2, 3 and (14), we conclude
|7 (x+iy) —a(x)®™ (x—iy) — f(¥)||c < [|®y (x+iy) —a(x)®, (x—iy) — fu(x)|lc+
Hfa () = ) lle + [[[@y (x+iy) = P (x+iy)] — a(x) [, (x—iy)] = @ (x—iy)[lc <

< ||@ (x+iy) — a(x)®, (x—iy) = fulx)llc + 2] fu(x) = f(x)[lc-
Hence, we get 1iI£O @ (x+iy) — a(x)® (x —iy) — f(x)||c = 0.
y—
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