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T. L. HAKOBYAN ∗

Chair of Algebra and Geometry YSU, Armenia

In this paper we introduce the concept of P1 property of sequences, con-
sisting of positive integers and prove two criteria revealing this property. First
one deals with rather slow increasing sequences while the second one works
for those sequences of positive integers which satisfy certain number theoretic
condition. Additionally, we prove the unboundedness of common divisors of
distinct terms of sequences of the form (22n

+d)∞
n=1 for integers d 6= 1.
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Introduction. It is known that for any non constant polynomial P with inte-
ger coefficients there exist infinitely many primes, dividing at least one term from
the sequence (P(n))∞

n=1 [1]. In this respect we are interested if there is a general
phenomenon behind this fact. It turns out that the answer is positive and somehow
depends on the rate of growth of the given sequence . To be more precise we give the
definition of P1 property of sequences of positive integers.

D e f i n i t i o n 1. We say that a sequence (nk)
∞
k=1 of positive integers has

the P1 property (denote (nk)
∞
k=1 ∈ P1), if there are infinitely many primes dividing at

least one term of the sequence.
To formulate our results we need one more definition.
D e f i n i t i o n 2. Suppose S = {p1, p2, ..., pn} is a finite set consisting of

prime numbers, where n ∈ N. We define Ŝ = {p1
k1 p2

k2 · ... · pn
kn |k1,k2, ...,kn ∈ Z+}

and arrange the set Ŝ as an increasing sequence, which is denoted by (nk(S))∞
k=1.

In this paper we prove the following theorem.

T h e o r e m 1. lim
k→∞

ln(ln(nk(S)))
ln(k)

=
1
n
.

The next result which is concerning P1 property, that is proved in this paper, is
motivated by sequences (an)

∞
n=1 of positive integers satisfying gcd(ak,al) = agcd(k,l)

for all positive integers k and l.
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T h e o r e m 2. Suppose (nk)
∞
k=1 and (mk)

∞
k=1 are sequences of positive inte-

gers. Then (nk)
∞
k=1 ∈ P1, if the following conditions hold.

1. lim
k→∞

nk = ∞;

2. (mk)
∞
k=1 is increasing;

3. gcd(nk,nk+l)< ml for all positive integers k and l.

In this paper we also deal with sequences of the form an = 22n
+ d, where

d ∈ Z. Recall that a Fermat number is a positive integer of the form Fn = 22n
+1 for

some nonnegative integer n. It is well known that gcd(Fk,Fl) = 1, whenever k 6= l.
For the proof we refer to [2] (Chapter 1, Theorem 13). In this way a natural question
arises. Whether this result is true for sequences an = 22n

+ d for odd integers d?
In this paper we prove a theorem, which gives a negative answer to this question.

T h e o r e m 3. For any integer d 6= 1 and positive integer m there exist
distinct elements ak and al in the sequence an = 22n

+d such that gcd(ak,al)> m.

Proof of Theorem 1. Suppose we have positive numbers w1,w2, ...,wn > 0,
where n ∈ N.

D e f i n i t i o n 3. For any W > 0 we define

N(W ;w1,w2, ...,wn) =

∣∣∣∣∣
{
(k1,k2, ...,kn) ∈ (Z+)

n|
n

∑
i=1

kiwi ≤W

}∣∣∣∣∣ .

L e m m a 1.
W n

n!
n

∏
i=1

wi

≤ N(W ;w1,w2, ...,wn)≤

(
W +

n

∑
i=1

wi

)n

n!
n

∏
i=1

wi

.

P r o o f . Consider the lattice Λ in Rn, spanned over the basis {w1e1, ...,wnen},
where {e1, ...,en} is the standard basis of Rn. Define

Πr = {(x1,x2, ...,xn) ∈ (R+)
n|

n

∑
i=1

xi ≤ r} ⊂ Rn

for any r > 0. Then N(W ;w1,w2, ...,wn) = |Λ∩ΠW | is the number of lattice points
in the simplex ΠW .

Now for any point x = (x1,x2, ...,xn) ∈ Λ∩Π ( i.e. for any solution) construct
an open parallelotope Πx = {(t1, ..., tn)||ti− xi| < wi/2, i = 1,2, ...,n} ⊂ Rn with a

center at that point. Note that Πx∩Πy = /0,V(Πx) =
n

∏
i=1

wi for all x,y∈Λ∩ΠW , x 6= y,

where V stands for the volume.

Set ∆ =
n

∑
i=1

wi,v = (w1/2, ...,wn/2) ∈ Rn and Πr,v = {x− v|x ∈ Πr} (shift of

the simplex Πr by vector v). Note that ΠW ⊂
⋃

x∈Λ∩ΠW

Πx ⊂ΠW+∆,v.
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Comparing volumes yields
W n

n!
≤N(W ;w1,w2, ...,wn)

n

∏
i=1

wi≤
(W +∑

n
i=1 wi)

n

n!
.

It remains only to divide all the parts of the inequality by
n

∏
i=1

wi. �

One can find an additional information concerning Lemma 1 in [1, 3].
D e f i n i t i o n 4. For any l ∈ N we set tl = |{k|nk(S)≤ l}|.
Observe that due to Definition 2.

tl =

∣∣∣∣∣
{
(k1,k2, ...,kn) ∈ (Z+)

n|
n

∏
i=1

pki
i ≤ l

}∣∣∣∣∣=
=

∣∣∣∣∣
{
(k1,k2, ...,kn) ∈ (Z+)

n|
n

∑
i=1

ln(pi)ki ≤ ln(l)

}∣∣∣∣∣=
= N(ln(l); ln(p1), ln(p2), ..., ln(pn)),

As a consequence of Lemma 1, we get that there exist constants c1 > 0 and
c2 > 0 such that c1W n < N(W ;w1,w2, ...,wn) < c2W n for all W > ln(2). Therefore,
for some constants a > 0 and b > 0 the inequality

a(ln(l))n < N(ln(l); ln(p1), ln(p2), ..., ln(pn))< b(ln(l))n

holds for all l ≥ 2. Substituting l = nk(S) for k = 2,3, ..., we obtain
a(ln(nk(S)))n < tnk(S) < b(ln(nk(S)))n

and, therefore, ln(a) + n ln(ln(nk(S))) < ln(tnk(S)) < ln(b) + n ln(ln(nk(S))). Using
that (nk(S))∞

k=1 is an increasing sequence, we conclude that tnk(S) = k for all k ∈ N.
As a result

ln(a)+n ln(ln(nk(S)))< ln(k)< ln(b)+n ln(ln(nk(S)))
for all k ≥ 2, k ∈ N and so

limsup
k→∞

ln(ln(nk(S)))
ln(k)

≤ 1/n≤ liminf
k→∞

ln(ln(nk(S)))
ln(k)

,

which shows that lim
k→∞

ln(ln(nk(S)))
ln(k)

=
1
n
. �

C o r o l l a r y 1. If (nk)
∞
k=1 is an increasing sequence of positive integers and

liminf
k→∞

ln(ln(nk))

ln(k)
= 0, then (nk)

∞
k=1 ∈ P1.

R e m a r k 1. A close result was previously proved in [4]. The result was
formulated for almost injective sequences, i.e. for the sequences (nk)

∞
k=1 of positive

integers for which there exists a constant c such that |{k|nk = m}| ≤ c for all positive
integers m. This definition of almost injective sequences was inspired by non constant
polynomials P, since they attain any value at most c = deg(P) times. Our result is
independent of [4].

P r o o f . Suppose to the contrary that (nk)
∞
k=1 /∈ P1. This means that there

is a finite set S consisting of prime numbers such that (nk)
∞
k=1 is a subsequence of

(nk(S))∞
k=1. Hence

liminf
k→∞

ln(ln(nk))

ln(k)
≥ liminf

k→∞

ln(ln(nk(S)))
ln(k)

=
1
|S|

> 0,

which is a contradiction. �
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C o r o l l a r y 2. For any non constant polynomial P with integer coefficients
the sequence (P(n))∞

n=1 ∈ P1.
P r o o f . The sequence (P(n))∞

n=1 is eventually increasing and

lim
n→∞

ln(ln(P(n)))
ln(n)

= 0. It remains to use Corollary 1. �

We would also like to give a purely number theoretic proof of this fact.
P r o o f . Suppose that the finite set S = {p1, p2, ..., pn} contains all possible

prime factors of all numbers P(n), n ∈ N, where P is the given polynomial. For
j ∈ {1,2, ..,n} we define k j = minn∈N νp j(P(n)).

Suppose also that k j = νp j(P(s j)) for each j ∈ {1,2, ..,n}. By the Chinese
Remainder Theorem, there is a positive integer n such that n ≡ s j( mod p j

k j+1)
for all j ∈ {1,2...,n}. From this it follows that P(n) ≡ P(s j)( mod p j

k j+1) for all
j ∈ {1,2...,n}. Consequently, P(n) is not divisible by p j

k j+1 for all j ∈ {1,2...,n}.
Hence, P

(
n + s∏

n
j=1 p j

k j+1
)

is not divisible by p j
k j+1 for all j ∈ {1,2...,n} and

s ∈ N. As a result we obtain P
(

n+ s
n

∏
j=1

p j
k j+1

)
≤

n

∏
j=1

p j
k j for all s ∈ N. The latter

assertion is a contradiction to the fact that P is a non constant polynomial. �
Proof of Theorem 2. Suppose (nk)

∞
k=1 /∈ P1. Then there is a finite set S =

= {p1, p2, ..., pn}, consisting of prime numbers such that any term of the sequence
(nk)

∞
k=1 is a product of some elements (not necessarily distinct) from the set S. As the

sequence (nk)
∞
k=1 tends to infinity, it is unbounded, so there is at least one prime p∈ S

such that the sequence (νp(nk))
∞
k=1 is unbounded, where νp(m) = max{k|m

...pk} for
any integer m and prime p. WLOG we may assume that the set of all such primes
p ∈ S is {p1, p2, ..., pl}, for some 1≤ l ≤ s.

D e f i n i t i o n 5. For any 1≤ t ≤ l and M ∈ N we define
At(M), {k|νpt (nk)> M}= (sM,t, j)

∞
j=1,

L,max{νp j(nk)|l +1≤ j ≤ s, k ∈ N}< ∞, l < s.

C o r o l l a r y 3. For each M ∈ N, one has that N =
l⋃

t=1

At(M) ∪ AM

for the set
AM = {k|νpt (nk)≤M, t = 1,2, ..., l}.

It is finite, since |AM| ≤

∣∣∣∣∣
{

k|nk ≤
l

∏
i=1

pM
i ·

s

∏
j=l+1

pL
j

}∣∣∣∣∣ , where the latter product

T =
s

∏
j=l+1

pL
j is assumed to be 1 if l = s.

L e m m a 2. For sufficiently large M the inequality sM,t, j+1 − sM,t, j > l
holds for all t ∈ {1,2, ..., l} and j ∈ N.

P r o o f . We choose M large enough to satisfy 2M >ml. Using that pM
t |nsM,t, j+1

and pM
t |nsM,t, j we deduce that m(sM,t, j+1−sM,t, j) > gcd(nsM,t, j+1 ,nsM,t, j)≥ pt

M ≥ 2M > ml.

Since the sequence
(

mt

)∞

t=1
is increasing, we conclude that sM,t, j+1− sM,t, j > l. �
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Consequently for all t ∈ {1,2, ..., l}, N ∈ N, and sufficiently large M,

|At(M)∩{1,2, ...,N}| ≤
[

N
l +1

]
+1,

where [x] stands for the integer part of x ∈ R. Therefore, for a fixed sufficiently
large M

|AM| ≥ |{1,2, ...,N}\
l⋃

t=1

At(M)| ≥

≥ N−
l

∑
t=1
|At(M)∩{1,2, ...,N}| ≥ N− l

([
N

l +1

]
+1
)
≥ N

l +1
− l

for each positive integer N. From this inequality we infer that AM is infinite, which is
contrary to Corollary 3. The Proof of Theorem 2 is completed. �

C o r o l l a r y 4. Let (nk)
∞
k=1 be a sequence of positive integers, which tends

to infinity. If for each l ∈ N there is a constant cl ∈ N such that gcd(nk,nk+l)≤ cl for
all positive integers k, then (nk)

∞
k=1 ∈ P1.

P r o o f . We define a sequence (ml)
∞
l=1 of positive integers by

ml = max{c1,c2, ...,cl}+ l

for all positive integers l. Now all conditions of Theorem 2 are satisfied and the
Corollary is proved. �

C o r o l l a r y 5. If an increasing sequence (nk)
∞
k=1 of positive integers

satisfies gcd(nk,nl) = ngcd(k,l) for all positive integers k and l, then (nk)
∞
k=1 ∈ P1.

P r o o f . Let us set cl = nl for each l ∈ N, and observe that

gcd(nk,nk+l) = ngcd(k,k+l) = ngcd(k,l) ≤ nl = cl,

since (nk)
∞
k=1 is increasing. So the conditions of Corollary 4 are satisfied. �

Proof of Theorem 3. Suppose that there is an integer d 6= 1 and a positive inte-
ger m such that gcd(ak,al)≤m for all distinct elements ak and al of this sequence. It
follows that if for some positive integer ν and distinct positive integers k and l, pν |ak
and pν |al , then pν ≤ gcd(ak,al) ≤ m. Consequently for each prime p the sequence
(νp(an))

∞
n=1 is bounded. Let us prove some auxiliary lemmas.

L e m m a 3. If positive integers n and k are given, which satisfy ν2(k) < n,

then there is a positive integer l > n such that (2l−2n)
...k.

P r o o f . Let k = 2ab, where a = ν2(k)< n and b be an odd number. Since

b|2φ(b)−1

(φ is the Euler’s totient function), we get that (2n+φ(b) − 2n)
...2nb

...2ab = k.
We now set l = n+φ(b). The Lemma is proved. �

L e m m a 4. If for some prime p > m and positive integer n the relation p|an

holds, then p≡ 1(mod 2n).
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P r o o f . Suppose p 6≡ 1(mod 2n). Then, by Lemma 1, there is some positive

integer l > n such that (2l−2n)
...(p−1). Consequently,

al−an = 22l −22n
= 22n

(22l−2n−1)
...22n

(2p−1−1) = 22n−1(2p−2)
...p

by Fermat’s little theorem. Since p|an, we thus get that p|al , and so
p≤ gcd(an,al)≤ m,

which contradicts the conditions of the Lemma. �
L e m m a 5. |d| is a power of 2.
P r o o f . Let an = 2knbncn for any positive integer n, where the prime divisors

of bn are precisely the odd prime divisors of an, which are less or equal to m. If
there is no such prime, we set bn = 1. From Lemma 2 it follows that cn ≡ 1(mod 2n)
and so an ≡ 2knbn(mod 2n). On the other hand, an = 22n

+ d ≡ d(mod 2n), hence
2knbn ≡ d(mod 2n). As the number of primes not exceeding m is finite, and the
sequence (νp(an))

∞
n=1 is bounded for each prime p, there exists some positive in-

teger M such that 2knbn ≤M for all n ∈ N. In the long run we get 2knbn = d for all
sufficiently large n (in particular d 6= 0, which was clear). From this we infer that

22n
+d = an = 2knbncn = dcn

...d
and, therefore, d|22n

for all sufficiently large n ∈ N. �
L e m m a 6. For any sufficiently large positive integer n there is a positive

integer ln > n such that aln
...an.

P r o o f . For d = −1 one has that an+1 = 22n+1 − 1
...22n − 1 = an and we are

done. Now suppose d 6=±1. In accordance with Lemma 5, d =±2k for some positive
integer k. Let us choose a positive integer n > ν2(k), then ν2(2n−k) = ν2(k). Choose

ln > n from Lemma 3, then (2ln −2n)
...(2n− k), and thereby (2ln − k)

...(2n− k). Since

ν2(2ln−k) = ν2(k) = ν2(2n−k), the quotient
2ln− k
2n− k

is an odd integer, which means

that
(22ln−k±1)

...(22n−k±1).

Multiplying by 2k, we obtain aln
...an, depending on whether d = 2k or d =−2k. �

One can infer from Lemma 6, that an = gcd(an,aln)≤ m for n > ν2(k), which
is a contradiction. �
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