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MOORE-PENROSE INVERSE OF BIDIAGONAL MATRICES. IV
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The present work completes a research started in the papers [1H3]. Based
on the results obtained in the previous papers, here we give a definitive solution
to the problem of the Moore—Penrose inversion of singular upper bidiagonal
matrices.
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Introduction. We consider a problem of the Moore—Penrose inversion of
singular upper bidiagonal matrices

C a4 by -
d b, 0
A= (1)
0 dnfl bnfl
L dn
under the assumption by, by, ...,b, 1 # 0 (note that this assumption does not restrict

the generality of the problem, since if some of over-diagonal entries of the matrix A
are zero, then the original problem is decomposed into several similar problems for
bidiagonal matrices of lower order). In [1] we obtained a solution to the problem in
a special case, where dy,d>,...,d,—1 #0,d, =0.

To solve the problem for any arrangement of one or more zeros on the main
diagonal of the matrix A, in [2,3] we carried out some preliminary constructions and
calculations. At first, we represented the matrix (1) in the block form
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with diagonal blocks Ay, k =1,2,...,m, of the size n; x n; and over-diagonal blocks
By, k=1,2,....m—1, of the size n; X nyy;, where n; +ny +---+n, = n. The
structure of the blocks was specified in the Introduction of [2[]; ibid the types 1, 2
and 3 of the blocks A have been identified. Note that by virtue of the partitioning
rule, only the last block A, in (2) can be a block of type 3. The blocks By are given
in (5) of [2].

As has been shown in [2]] (see A Way of Computing the Moore-Penrose
Invertion), the matrix A™ has the following block form:

Z] i
H, 7 0
AT = ; (3)
0 Hu-1 Zn
L Hm Zm i
the blocks Z; and Hj are computed by the formulae
Zy= lim Li(e) AT, k=1.2,....m, (4)
e—+40
H,= lim L(e) 'Bl |, k=273,....m, (5)
e—+0
where
Li(e)=ATA  + el (6)
Li(e)=AlAy+Bl By +el,, k=2.3,...,m, (7)

and [ stands for the identity matrix of the order ny.
For the purpose of simplifying the record of subsequent formulae, let us write
the block A, 1 < k < m, in the form

gk (k) ]
Wb
) by 0
Ak: 3 (8)
0 d, By
dy)

where, according to (1),

(k) ;
di :dn|+“'+nk71+l‘7 1= 1,2,...,1’1](,

© . ©)

bl‘ :bn1+-~-+nk,1+ia 1= 172a"'7nk_1'

We introduce the following notation:
(k)
k) bs k k
r‘g):?,s:1,2,...,nk—1;r(()):r,(,k):1. (10)
Further, let

Ak:bnl+n2+..4+nk,k:1,2,...7m—1 (11)

(see (5) in [2]).

Based on the results obtained in the previous articles [1-3[], below we give
a closed form expressions for the entries of the matrix A" as well as a numerical
algorithm for their computation.
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Computation of the Blocks Z;. Let us start with the block Z;. The problem
of computing this block was discussed in [2] (see Block Z;). If the corresponding
block A is of type 1, then the entries of the block Z; = AT are computed using the
formulae (50)—(52) from [1]. If A; is a block of type 2, then Z; = [0];x; for n; = 1;
for n; > 2 the block Z; is the lower bidiagonal matrix given in (17) of [2].

Note that if m = 1 (see the block representation (3) of the matrix A), then
obviously AT = Z;.

Let us discuss the blocks Z, 2 < k < m. If A is a block of type 1, the formulae
for the entries of the block Z; are actually obtained in Lemma 3 of [3]] (replacing n
with n; and taking into account notation (9),(10)). If A is a block of type 2, the entries
of the block Z; are derived in Lemma 5 of [3]] (replacing n with n; and using notation
(9)). As has been said above, only the last block A,, in (2) can be a block of type
3. In this case the entries of the block Z,, are computed by the formulae derived in
Lemma 1 of [3]] (replacing n with n,,, A with A,,_; and taking into account notation
(9),(10)).

Thus, we arrive at to the following statement.

Theorem 1. Leta singular upper bidiagonal matrix A from (1) with non-
zero over-diagonal entries is represented in the block form (2), according to the rule
described in Introduction of [2]]. Then the entries of diagonal blocks Z; = [zg.()]nkxnk,
1 <k < m, in the block representation (3) of the matrix A™ are computed as follows.

I. The entries of the block Z;:

1) if A; is a block of type 1, then
la) for the indeces j=1,2,...,ny—landi=1,2,...,]

i+jn1_j g "= (1)
(_1) Z H ) H Ty

s=n|—k+1

Zij il ni ny—k 1 ni—1 ’
1, g0 _ (1)
[1"-4; 0 [T =
s=1 k= s=1Ts s=n;—k+1

1
1b) for the indeces j =1,2,...,n; — 1 andz—]+1 j+2,...,n1:

l+ j+1 ! (1 / L= 1 1)
! Hr) [l Hr(
(1)_ k=1 \s=1"s

Zij - ni l’ll—k 1 n1—1 ’
(1) L (1
d; Z H m H Ts
k=1 \ s=1 Ts s=ny—k+1

1c) for the index j = ny:
=0, i=1.2,....n

tn1

2) if A; is a block of type 2, then
forn; =1:

Zi = [0]1x1;
forn; > 2:
o _ 1
Zii—1 = 7 »
1i— bl |
ZS) =0 in the remaining cases.

i:2,3,...,n1,
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II. The entries of the blocks Z;, 2 <k <m:
3) if Ay is a block of type 1, then
3a) for theindeces j=1,2,...,mpandi=1,2,...,]

zgf) =0;

3b) for the indeces j=1,2,....npy—landi=j+1,j+2,...,m:
) (_1)i+j+1 i—1 1

ij = a® s:j@’
4) if A is a block of type 2, then
forn, =1:
Zr=[0lix1;
for ny > 2:
w _ Lo
i = @, i=2,3,...,m
Zg-() =0 in the remaining cases;
5) if A,, is a block of type 3 and n,, = 1, then
4" .
| gm? A2 ’
dl +Am71 1x1

6) if A, is a block of type 3 and n,,, > 2, then
6a) for the indeces j=1,2,...,ny,andi=1,2,...,;:

1
=

i— — i—1 1
Vi )

Z(m): s=1"s k=1 s=k+17s
L nu—1 p—1 1 np—1 1 ’

dy [H 7 /; B (Hrﬁ””) ( IT r<m>> +D™

s=1 Ts 1 b \s= s=k+17Ts
where
(W‘)2 Ny —1 1 ny—1
(m) — _m - (m) —
K] - d(m) H r(m) ? D ’” 1 H r
J s=j 'S
6b) for the indeces j = 1,2 ...,nm—landi:j+1 J+2,... 0,
ny—1 nmfl k—1 ny—1 1
l+]+1 m (m) (m)
H r +d, BT 2 )|
(m) k=i s=i s=k s
Gj = 1 1 1 ’
) np— 1 2 np— 1 ) nm— 1 m)
(m) o m o m
4" 1 1] T A )3 )2 Hr s [1 || P
s=1 "s k=1 bk s=1 s=k+1"s
where
AZ j—1 ny—1
(m) _ “m—1 (m) (m) — A2 (m)
;" = P r", D" =A H re.

j =1 s=1

©

Thus, we have got the formulae to compute the entries of the blocks Z;.
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Computation of the Blocks H;. Proceed to the blocks Hy, 2 < k < m, in the
block representation (3) of the matrix A™. If Ay is a block of type 1, the entries of
the corresponding block Hy are computed by the formulae derived in Lemma 4 of [3]]
(naturally, replacing n with n, [ with n;_;, A with A;_; and taking into account
notation (9),(10)). Further, if A, is a block of type 2, the entries of the block H; are
computed according to Lemma 6 from [3]] (replacing A with A;_;). Finally, if A,, is
a block of type 3, the entries of the block H,, are computed by the formulae derived
in Lemma 2 of [3] (replacing n with n,,, [ with n,,_;, A with A,,_; and taking into
account notation (9),(10)).

As aresult we get the following statement:

Theorem 2. Leta singular upper bidiagonal matrix A from (1) with non-
zero over-diagonal entries is represented in the block form (2), according to the

rule described in Introduction of [2]. Then the entries of under-diagonal blocks

Hk — [h(k)

ij ]nk xm_1» 2 < k < m, in the block representation (3) of the matrix At are
computed as follows:
1) if A; is a block of type 1, then
i+1 i—1
W _ =D
h’ink,l_ Ak—] Hﬁ) l_1727"'7nka

hg.{) =0 in the remaining cases;

2) if Ay is a block of type 2, then

hl(f) =0 in the remaining cases;
3) if A,, is a block of type 3 and n,,, = 1, then
m)  _ Dm0 .
hlﬁm,. = = S hij=0,j=12,...,0p_1—1;

4) if A,, is a block of type 3 and n,,, > 2, then

4a) for the indeces j=1,2,...,n,—1—landi=1,2,...,n,:

n" = 0;

4b) for the indeces j=n,, andi=1,2,...,ny:

. nm—1 m) ()2 1 1 = (m)
(— 1) Am—l H rS + dﬂm Z (m)2 H rs
S=1 i

k=i a

iy~ ) ny—1 1 ny—1 1
(m) 2 (m)
| T v (11

s=1 "s

np—1

where D™ = A’ | H r.
s=1

Thus, in Theorems 1 and 2 we have derived closed form expressions for the
entries of the Moore—Penrose inverse of upper bidiagonal matrix A from (1). In the
next section we discuss an issue of practical computation of the matrix A ™.
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A Procedure to Compute the Moore-Penrose Inverse. In the paper [2]] we
have developed a computational procedure of finding the first diagonal block Z; in
the block representation (3) of the matrix A™ (see Block Z;, Procedure Z1). Further,
in the paper [3]] we have developed numerical algorithms to compute model matrices
Z and H (see (10),(11) in [3]]). Taking advantage of these results, below we give the
following computational procedure.

Procedure 2d/pinv (A,n = A")

Input: an upper bidiagonal matrix A of the form (1).

1. A partition (2) of the matrix A into blocks according to the rule specified in
[2](Introduction); identification of the blocks Ay (1 <k <m), Bi(1 <k <
m — 1) and determination of the parameters ny, 1 < k < m, which define the
block sizes. In each block Ay its own internal numbering of the entries is given
(see (8),(9)). The quantities Ag, 1 <k < m— 1, are introduced (see (11)).

2. The block Z; in the block representation (3) of the matrix A™ is computed. For
that the procedure Z1 (Aj,n; = Z;) from [2] is used. The procedure requires
n? 4+ O(n,) arithmetical operations.

If m = 1, then the computations are completed and A™ = Z;.
If m > 2, then proceed to successive computation of the blocks Z; and Hy, for
k=2,3,...,m.

3. If Ay is a block of type 1, the blocks Z; and Hj, are computed using the algorithm
Z,H/caseB (Ay,Ay_1,ng,ng—1 = Z,Hy) given in [3]. The algorithm requires
(1/2)n? + O(ny) arithmetical operations.

4. If Ay is a block of type 2, simple expressions for the entries of the blocks Z;
and H; are obtained in Lemmas 5 and 6 of [3]]:

if ny = 1, then

1
Zk:[o}lxh Hk:|:0...OA:| )
k—1 1><nk,1

if ny > 2, then

0 " 1
b(lk)’l O 0 0 O e 0 E
Z = b 0 Ho=|00 0 0
0 Do .o :
b(k)711 0 00 ... 0 0
L ng— J - -

It requires no more than n; arithmetical operations.

5. If A, is a block of type 3, the blocks Z,, and H,, are computed using the algo-
rithm Z,H/caseA (A, Ap—1,0m,Nm—1 = Zm, Hy,) given in [3]]. The algorithm
requires n2, + O(n,,) arithmetical operations.

Output: matrix A™.
End procedure
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Direct calculations show that for m > 2 the described computational procedure
requires no more than

lmfl
n%+§1§2n,%+n,2n+0(n)

arithmetical operations (recall that ny +ny +- - - +n,, = n). If m = 1, this number does
not exceed n? + O(ny).

Thus we can formulate the following statement.

Proposition. Let A be a singular upper bidiagonal matrix of the form
(1) with non-zero over-diagonal entries by,bs,...,b,_1. Then the Moore—Penrose
inverse AT of this matrix can be obtained using the computational procedure 2d/pinv,

1 m—1
which requires no more than n? + O(n;) (if m = 1) or n? + 3 ) n? 4+ n2 4 0(n)
k=2

(@if m > 2) arithmetical operations.

As a clarification, we note the following important features of the procedure.
Proceeding from the structure of the blocks in the block representation (3) of the
matrix AT (namely, the presence of zeros located at predetermined places) and
estimation of the number of arithmetical operations required to compute each block,
we can assert that for computing one non-zero entry of the matrix A" asymptoti-
cally is expended one arithmetical operation. Thereby the proposed method can be
considered as an optimal.

Concluding Remarks. As a result of the study carried out we have obtained a
solution to the problem of the Moore—Penrose inverstion of singular upper bidiagonal
matrices. We have derived a closed form expressions for the entries of pseudoinverse
matrix and developed an optimal numerical algorithm for their computation.
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