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The present work completes a research started in the papers [1–3]. Based
on the results obtained in the previous papers, here we give a definitive solution
to the problem of the Moore–Penrose inversion of singular upper bidiagonal
matrices.
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Introduction. We consider a problem of the Moore–Penrose inversion of
singular upper bidiagonal matrices

A =


d1 b1

d2 b2 0
. . . . . .

0 dn−1 bn−1
dn

 (1)

under the assumption b1,b2, . . . ,bn−1 6= 0 (note that this assumption does not restrict
the generality of the problem, since if some of over-diagonal entries of the matrix A
are zero, then the original problem is decomposed into several similar problems for
bidiagonal matrices of lower order). In [1] we obtained a solution to the problem in
a special case, where d1,d2, . . . ,dn−1 6= 0, dn = 0.

To solve the problem for any arrangement of one or more zeros on the main
diagonal of the matrix A, in [2, 3] we carried out some preliminary constructions and
calculations. At first, we represented the matrix (1) in the block form

A =


A1 B1

A2 B2
. . . . . .

Am−1 Bm−1
Am

 (2)
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with diagonal blocks Ak, k = 1,2, . . . ,m, of the size nk×nk and over-diagonal blocks
Bk, k = 1,2, . . . ,m− 1, of the size nk × nk+1, where n1 + n2 + · · ·+ nm = n. The
structure of the blocks was specified in the Introduction of [2]; ibid the types 1, 2
and 3 of the blocks Ak have been identified. Note that by virtue of the partitioning
rule, only the last block Am in (2) can be a block of type 3. The blocks Bk are given
in (5) of [2].

As has been shown in [2] (see A Way of Computing the Moore–Penrose
Invertion), the matrix A+ has the following block form:

A+ =


Z1
H2 Z2 0

. . . . . .
0 Hm−1 Zm−1

Hm Zm

 ; (3)

the blocks Zk and Hk are computed by the formulae
Zk = lim

ε→+0
Lk(ε)

−1AT
k , k = 1,2, . . . ,m , (4)

Hk = lim
ε→+0

Lk(ε)
−1BT

k−1 , k = 2,3, . . . ,m , (5)

where
L1(ε) = AT

1 A1 + εI1 , (6)

Lk(ε) = AT
k Ak +BT

k−1Bk−1 + εIk , k = 2,3, . . . ,m, (7)

and Ik stands for the identity matrix of the order nk.
For the purpose of simplifying the record of subsequent formulae, let us write

the block Ak, 1≤ k ≤ m, in the form

Ak =


d(k)

1 b(k)
1

d(k)
2 b(k)

2 0
. . . . . .

0 d(k)
nk−1 b(k)

nk−1
d(k)

nk

 , (8)

where, according to (1),

d(k)
i = dn1+···+nk−1+i , i = 1,2, . . . ,nk ,

b(k)i = bn1+···+nk−1+i , i = 1,2, . . . ,nk−1 .
(9)

We introduce the following notation:

r(k)s =
b(k)

s

d(k)
s
, s = 1,2, . . . ,nk−1; r(k)0 = r(k)nk = 1 . (10)

Further, let
∆k = bn1+n2+···+nk , k = 1,2, . . . ,m−1 (11)

(see (5) in [2]).
Based on the results obtained in the previous articles [1–3], below we give

a closed form expressions for the entries of the matrix A+ as well as a numerical
algorithm for their computation.
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Computation of the Blocks Zk. Let us start with the block Z1. The problem
of computing this block was discussed in [2] (see Block Z1). If the corresponding
block A1 is of type 1, then the entries of the block Z1 = A+

1 are computed using the
formulae (50)–(52) from [1]. If A1 is a block of type 2, then Z1 = [0]1×1 for n1 = 1;
for n1 ≥ 2 the block Z1 is the lower bidiagonal matrix given in (17) of [2].

Note that if m = 1 (see the block representation (3) of the matrix A), then
obviously A+ = Z1.

Let us discuss the blocks Zk, 2≤ k≤m. If Ak is a block of type 1, the formulae
for the entries of the block Zk are actually obtained in Lemma 3 of [3] (replacing n
with nk and taking into account notation (9),(10)). If Ak is a block of type 2, the entries
of the block Zk are derived in Lemma 5 of [3] (replacing n with nk and using notation
(9)). As has been said above, only the last block Am in (2) can be a block of type
3. In this case the entries of the block Zm are computed by the formulae derived in
Lemma 1 of [3] (replacing n with nm, ∆ with ∆m−1 and taking into account notation
(9),(10)).

Thus, we arrive at to the following statement.
T h e o r e m 1 . Let a singular upper bidiagonal matrix A from (1) with non-

zero over-diagonal entries is represented in the block form (2), according to the rule
described in Introduction of [2]. Then the entries of diagonal blocks Zk = [z(k)i j ]nk×nk ,
1≤ k ≤ m, in the block representation (3) of the matrix A+ are computed as follows.

I. The entries of the block Z1:
1) if A1 is a block of type 1, then

1a) for the indeces j = 1,2, . . . ,n1−1 and i = 1,2, . . . , j:

z(1)i j =

(−1)i+ j
n1− j

∑
k=1

(
n1−k

∏
s= j

1
r(1)

s

)(
n1−1

∏
s=n1−k+1

r(1)
s

)
i−1

∏
s=1

r(1)
s ·d

(1)
j

n1

∑
k=1

(
n1−k

∏
s=1

1
r(1)

s

)(
n1−1

∏
s=n1−k+1

r(1)
s

) ;

1b) for the indeces j = 1,2, . . . ,n1−1 and i = j+1, j+2, . . . ,n1:

z(1)i j =

(−1)i+ j+1

(
n1−1

∏
s=i

r(1)
s

)
·

j

∑
k=1

(
k−1

∏
s=1

1
r(1)

s

)(
j−1

∏
s=k

r(1)
s

)

d(1)
j

n1

∑
k=1

(
n1−k

∏
s=1

1
r(1)

s

)(
n1−1

∏
s=n1−k+1

r(1)
s

) ;

1c) for the index j = n1:
z(1)in1

= 0 , i = 1,2, . . . ,n1 ;
2) if A1 is a block of type 2, then

for n1 = 1:
Z1 = [0]1×1 ;

for n1 ≥ 2:

z(1)i i−1 =
1

b(1)
i−1

, i = 2,3, . . . ,n1 ,

z(1)i j = 0 in the remaining cases.
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II. The entries of the blocks Zk, 2≤ k ≤ m:
3) if Ak is a block of type 1, then

3a) for the indeces j = 1,2, . . . ,nk and i = 1,2, . . . , j:

z(k)i j = 0;

3b) for the indeces j = 1,2, . . . ,nk−1 and i = j+1, j+2, . . . ,nk:

z(k)i j =
(−1)i+ j+1

d(k)
j

i−1

∏
s= j

1
r(k)

s
;

4) if Ak is a block of type 2, then
for nk = 1:

Zk = [0]1×1 ;

for nk ≥ 2:

z(k)i i−1 =
1

b(k)i−1

, i = 2,3, . . . ,nk ,

z(k)i j = 0 in the remaining cases;

5) if Am is a block of type 3 and nm = 1, then

Zm =

[
d(m)

1

d(m)2

1 +∆
2
m−1

]
1×1

;

6) if Am is a block of type 3 and nm ≥ 2, then
6a) for the indeces j = 1,2, . . . ,nm and i = 1,2, . . . , j:

z(m)
i j =

(−1)i+ j

[
i−1

∏
s=1

1
r(m)

s
+∆

2
m−1

i−1

∑
k=1

1

b(m)2

k

(
k

∏
s=1

r(m)
s

)(
i−1

∏
s=k+1

1
r(m)

s

)]
κ

(m)

j

d(m)2

nm

[
nm−1

∏
s=1

1
r(m)

s
+∆

2
m−1

nm−1

∑
k=1

1

b(m)2

k

(
k

∏
s=1

r(m)
s

)(
nm−1

∏
s=k+1

1
r(m)

s

)]
+D(m)

,

where

κ
(m)

j ≡
d(m)2

nm

d(m)
j

nm−1

∏
s= j

1
r(m)

s
, D(m) ≡ ∆

2
m−1

nm−1

∏
s=1

r(m)
s ;

6b) for the indeces j = 1,2, . . . ,nm−1 and i = j+1, j+2, . . . ,nm:

z(m)
i j =

(−1)i+ j+1

[
nm−1

∏
s=i

r(m)
s +d(m)2

nm

nm−1

∑
k=i

1

d(m)2

k

(
k−1

∏
s=i

r(m)
s

)(
nm−1

∏
s=k

1
r(m)

s

)]
ω

(m)

j

d(m)2

nm

[
nm−1

∏
s=1

1
r(m)

s
+∆

2
m−1

nm−1

∑
k=1

1

b(m)2

k

(
k

∏
s=1

r(m)
s

)(
nm−1

∏
s=k+1

1
r(m)

s

)]
+D(m)

,

where

ω
(m)

j ≡
∆

2
m−1

d(m)
j

j−1

∏
s=1

r(m)
s , D(m) ≡ ∆

2
m−1

nm−1

∏
s=1

r(m)
s .

Thus, we have got the formulae to compute the entries of the blocks Zk.
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Computation of the Blocks Hk. Proceed to the blocks Hk, 2 ≤ k ≤ m, in the
block representation (3) of the matrix A+. If Ak is a block of type 1, the entries of
the corresponding block Hk are computed by the formulae derived in Lemma 4 of [3]
(naturally, replacing n with nk, l with nk−1, ∆ with ∆k−1 and taking into account
notation (9),(10)). Further, if Ak is a block of type 2, the entries of the block Hk are
computed according to Lemma 6 from [3] (replacing ∆ with ∆k−1). Finally, if Am is
a block of type 3, the entries of the block Hm are computed by the formulae derived
in Lemma 2 of [3] (replacing n with nm, l with nm−1, ∆ with ∆m−1 and taking into
account notation (9),(10)).

As a result we get the following statement:
T h e o r e m 2 . Let a singular upper bidiagonal matrix A from (1) with non-

zero over-diagonal entries is represented in the block form (2), according to the
rule described in Introduction of [2]. Then the entries of under-diagonal blocks
Hk = [h(k)i j ]nk×nk−1 , 2 ≤ k ≤ m, in the block representation (3) of the matrix A+ are
computed as follows:

1) if Ak is a block of type 1, then

h(k)ink−1
=

(−1)i+1

∆k−1

i−1

∏
s=1

1
r(k)

s
, i = 1,2, . . . ,nk ,

h(k)i j = 0 in the remaining cases;

2) if Ak is a block of type 2, then

h(k)1nk−1
=

1
∆k−1

,

h(k)i j = 0 in the remaining cases;

3) if Am is a block of type 3 and nm = 1, then

h(m)
1nm−1

=
∆m−1

d(m)2

1 +∆2
m−1

; h1 j = 0, j = 1,2, . . . ,nm−1−1;

4) if Am is a block of type 3 and nm ≥ 2, then
4a) for the indeces j = 1,2, . . . ,nm−1−1 and i = 1,2, . . . ,nm:

h(m)
i j = 0;

4b) for the indeces j = nm and i = 1,2, . . . ,nm:

h(m)
inm−1

=

(−1)i+1
∆m−1

[
nm−1

∏
s=i

r(m)
s +d(m)2

nm

nm−1

∑
k=i

1

d(m)2

k

(
k−1

∏
s=i

r(m)
s

)(
nm−1

∏
s=k

1
r(m)

s

)]

d(m)2

nm

[
nm−1

∏
s=1

1
r(m)

s
+∆

2
m−1

nm−1

∑
k=1

1

b(m)2

k

(
k

∏
s=1

r(m)
s

)(
nm−1

∏
s=k+1

1
r(m)

s

)]
+D(m)

,

where D(m) ≡ ∆
2
m−1

nm−1

∏
s=1

r(m)
s .

Thus, in Theorems 1 and 2 we have derived closed form expressions for the
entries of the Moore–Penrose inverse of upper bidiagonal matrix A from (1). In the
next section we discuss an issue of practical computation of the matrix A+.
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A Procedure to Compute the Moore–Penrose Inverse. In the paper [2] we
have developed a computational procedure of finding the first diagonal block Z1 in
the block representation (3) of the matrix A+ (see Block Z1, Procedure Z1). Further,
in the paper [3] we have developed numerical algorithms to compute model matrices
Z and H (see (10),(11) in [3]). Taking advantage of these results, below we give the
following computational procedure.

Procedure 2d/pinv (A,n⇒ A+)

Input: an upper bidiagonal matrix A of the form (1).

1. A partition (2) of the matrix A into blocks according to the rule specified in
[2](Introduction); identification of the blocks Ak (1 ≤ k ≤ m), Bk(1 ≤ k ≤
m− 1) and determination of the parameters nk, 1 ≤ k ≤ m, which define the
block sizes. In each block Ak its own internal numbering of the entries is given
(see (8),(9)). The quantities ∆k, 1≤ k ≤ m−1, are introduced (see (11)).

2. The block Z1 in the block representation (3) of the matrix A+ is computed. For
that the procedure Z1 (A1,n1⇒ Z1) from [2] is used. The procedure requires
n2

1 +O(n1) arithmetical operations.
If m = 1, then the computations are completed and A+ = Z1.
If m≥ 2, then proceed to successive computation of the blocks Zk and Hk, for
k = 2,3, . . . ,m.

3. If Ak is a block of type 1, the blocks Zk and Hk are computed using the algorithm
Z,H/caseB (Ak,∆k−1,nk,nk−1⇒ Zk,Hk) given in [3]. The algorithm requires
(1/2)n2

k +O(nk) arithmetical operations.

4. If Ak is a block of type 2, simple expressions for the entries of the blocks Zk
and Hk are obtained in Lemmas 5 and 6 of [3]:

if nk = 1, then

Zk = [0]1×1, Hk =

[
0 . . .0

1
∆k−1

]
1×nk−1

;

if nk ≥ 2, then

Zk =


0

b(k)−1

1 0 0
b(k)−1

2 0

0
. . . . . .

b(k)−1

nk−1 0

 , Hk =


0 0 . . . 0

1
∆k−1

0 0 . . . 0 0
...

...
. . .

...
...

0 0 . . . 0 0

 .

It requires no more than nk arithmetical operations.

5. If Am is a block of type 3, the blocks Zm and Hm are computed using the algo-
rithm Z,H/caseA (Am,∆m−1,nm,nm−1⇒ Zm,Hm) given in [3]. The algorithm
requires n2

m +O(nm) arithmetical operations.

Output: matrix A+.
End procedure
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Direct calculations show that for m≥ 2 the described computational procedure
requires no more than

n2
1 +

1
2

m−1

∑
k=2

n2
k +n2

m +O(n)

arithmetical operations (recall that n1+n2+ · · ·+nm = n). If m = 1, this number does
not exceed n2

1 +O(n1).
Thus we can formulate the following statement.
P r o p o s i t i o n . Let A be a singular upper bidiagonal matrix of the form

(1) with non-zero over-diagonal entries b1,b2, . . . ,bn−1. Then the Moore–Penrose
inverse A+ of this matrix can be obtained using the computational procedure 2d/pinv,

which requires no more than n2
1 +O(n1) (if m = 1) or n2

1 +
1
2

m−1

∑
k=2

n2
k + n2

m +O(n)

(if m≥ 2) arithmetical operations.
As a clarification, we note the following important features of the procedure.

Proceeding from the structure of the blocks in the block representation (3) of the
matrix A+ (namely, the presence of zeros located at predetermined places) and
estimation of the number of arithmetical operations required to compute each block,
we can assert that for computing one non-zero entry of the matrix A+ asymptoti-
cally is expended one arithmetical operation. Thereby the proposed method can be
considered as an optimal.

Concluding Remarks. As a result of the study carried out we have obtained a
solution to the problem of the Moore–Penrose inverstion of singular upper bidiagonal
matrices. We have derived a closed form expressions for the entries of pseudoinverse
matrix and developed an optimal numerical algorithm for their computation.
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