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In this paper the arithmetical functions with indeterminate values of argu-
ments are regarded. It is known that every λ -definable arithmetical function
with indeterminate values of arguments is monotonic and computable. The
λ -definability of every computable, monotonic, 1-ary arithmetical function with
indeterminate values of arguments is proved. For computable, monotonic,
k-ary, k ≥ 2, arithmetical functions with indeterminate values of
arguments, the so-called diagonal property is defined. It is proved that every
computable, monotonic, k-ary, k ≥ 2, arithmetical function with indeterminate
values of arguments, which has the diagonal property, is not λ -definable. It is
proved that for any k≥ 2, the problem of λ -definability for computable, mono-
tonic, k-ary arithmetical functions with indeterminate values of arguments is
algorithmic unsolvable. It is also proved that the problem of diagonal property
of such functions is algorithmic unsolvable, too.
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Introduction. The paper is devoted to arithmetical functions with indeter-
minate values of arguments. These functions are defined on partially ordered set
M = N ∪ {⊥}, where N is the set of natural numbers, ⊥ is the element, which
corresponds to indeterminate value. Each element of M is comparable with itself
and with ⊥, which is the least element of M. The notion of monotonic function is
introduced in a conventional way. A function is said to be naturally extended, if
its value is ⊥ whenever the value at least one of the argument is ⊥. Such func-
tions were regarded in [1]. In [2] the notions of computability, strong computability,
λ -definability for arithmetical functions with indeterminate values of arguments were
introduced. It was proved, that every λ -definable arithmetical function with inde-
terminate values of arguments is monotonic and computable. It was proved that
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every computable, naturally extended arithmetical function with indeterminate values
of arguments is λ -definable. It was proved too, that there exist strong computable,
monotonic, not naturally extended arithmetical functions with indeterminate values
of arguments, which are not λ -definable.

In this paper it is proved that every computable, monotonic, 1-ary arithmeti-
cal function with indeterminate values of arguments is λ -definable. For computable,
monotonic, k-ary, k ≥ 2, arithmetical functions with indeterminate values of argu-
ments, the so-called diagonal property is defined. It is proved that every computable,
monotonic, k-ary, k ≥ 2, arithmetical function with indeterminate values of argu-
ments, which has the diagonal property, is not λ -definable. The examples of
λ -definable and not λ -definable strong computable, monotonic, not naturally
extended, arithmetical functions with indeterminate values of arguments are given. It
is proved that for any k ≥ 2, the problem of λ -definability for strong
computable (therefore, for computable), monotonic, k-ary arithmetical functions with
indeterminate values of arguments is algorithmic unsolvable. It is also proved that
the problem of diagonal property for such functions is algorithmic unsolvable, too.
It is proved that for any k ≥ 1, the problem of monotonicity for strong computable
(therefore, for computable), k-ary arithmetical functions with indeterminate values of
argument is algorithmic unsolvable.

Definitions Used and Previous Results. In this section definitions and
previous results are given, which as a rule, are borrowed from [2, 3]. These
definitions and results will be accompanied by some comments.

Let M = N ∪{⊥}, where N = {0,1,2, . . .} is the set of natural numbers, ⊥ is
the element which corresponds to indeterminate value. Let us introduce the partial
ordering ⊆ on the set M. For every m ∈M we have: ⊥⊆ m and m ⊆ m. A mapping
ϕ : Mk→M, k≥ 1, is said to be k-ary arithmetical function with indeterminate values
of arguments.

D e f i n i t i o n 1 . A function ϕ : Mk →M, k ≥ 1, is said to be computable
if there exists an algorithm (Turing machine, see [4]), which for all m1, . . . ,mk ∈M
stops with value ϕ(m1, . . . ,mk) if ϕ(m1, . . . ,mk) 6= ⊥, and stops with value ⊥, or
works infinitely if ϕ(m1, . . . ,mk) =⊥.

D e f i n i t i o n 2 . A function ϕ : Mk → M, k ≥ 1, is said to be strong
computable, if there exists an algorithm (Turing machine, see [4]), which stops with
value ϕ(m1, . . . ,mk) for all (m1, . . . ,mk) ∈M.

It is obvious, that every strong computable, arithmetical function with inde-
terminate values of arguments is computable, but not every computable arithmetical
function with indeterminate values of arguments is strong computable.

D e f i n i t i o n 3 . A function ϕ : Mk → M, k ≥ 1, is said to be mono-
tonic if (m1, . . . ,mk) ⊆ (µ1, . . . ,µk) implies ϕ(m1, . . . ,mk) ⊆ ϕ(µ1, . . . ,µk) for all
mi,µi ∈M, i ∈ 1, . . . ,k.

Let ϕ : Mk → M, k ≥ 1, be arithmetical function with indeterminate values
of arguments. One can see that ϕ is monotonic ⇔ if for all m1, ...,mi, ...,mk ∈ M,
we have: if for some i = 1, . . . ,k, mi = ⊥ and ϕ(m1, . . . ,⊥, . . . ,mk) 6= ⊥, then
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ϕ(m1, . . . ,⊥, . . . ,mk) = ϕ(m1, . . . ,n, . . . ,mk) for all n ∈ N.

D e f i n i t i o n 4 . A function ϕ : Mk → M, k ≥ 1, is said to be naturally
extended if for all m1, . . . ,mk ∈ M, we have: if for some i = 1, . . . ,k, mi = ⊥, then
ϕ(m1, . . . ,mk) =⊥.

It is easy to see that every naturally extended arithmetical function with
indeterminate values of arguments is monotonic.

Let us fix countable set of variables V and define the set of terms Λ :
1. if x ∈V, then x ∈ Λ;
2. if t1, t2 ∈ Λ, then (t1t2) ∈ Λ;
3. if x ∈V and t ∈ Λ, then (λxt) ∈ Λ.

Abridged notation for the terms will be used: term (. . .(t1t2) . . . tk), where
ti ∈Λ, i = 1, . . . ,k, k > 1, is denoted as t1t2 . . . tk, and term (λx1(λx2(. . .(λxnt) . . .))),
where x j ∈V, t ∈ Λ, j = 1, . . . ,n, n > 0, is denoted as λx1x2 . . .xn.t.

The notion of a free and bound occurrence of a variable in a term and the
notion of a free variable of a term are introduced in a conventional way. A term that
does not contain free variables is said to be closed.

Terms t1 and t2 are said to be congruent (is denoted as t1 ≡ t2) if one term can
be obtained from the other by renaming bound variables. In what follows, congruent
terms are considered identical.

The term obtained from a term t as a result of the simultaneous substitution
of a term τ instead of all free occurrences of a variable x is denoted as t[x := τ]. A
substitution is said to be admissible if all free occurrences of variables of the term
being substituted remain free after the substitution. We will consider only admissible
substitutions.

Let us remind the notion of the β -reduction:

β = {((λx.t)τ, t[x := τ])
∣∣ t,τ ∈ Λ, x ∈V}.

A one-step β -reduction (→β ), β -reduction (→→β ) and β -equality (=β ) are
defined in a standard way.

We remind that the term (λx.t)τ is referred to as β -redex. A term not con-
taining β -redexes is referred to as β -normal form (further, simply normal form). The
set of all normal forms is denoted as NF. A term t is said to have a normal form, if
there exists a term t ′ ∈NF such that t =β t ′. A term of the form λx1x2 . . .xn.xt1t2 . . . tk,
where x,xi ∈V, t j ∈ Λ, i = 1, . . . ,n, n≥ 0, j = 1, . . . ,k, k≥ 0, is referred to us a head
normal form. The set of all head normal forms is denoted by HNF. A term t is said to
have a head normal form, if there exists a term t ′ ∈ HNF such that t =β t ′. It is known
that NF ⊂ HNF, but HNF 6⊂ NF.

We will extensively use the corollary from the Church–Rosser theorem, which
says that for any term t ∈ Λ the following two assertions are valid:

1. t =β t ′, t ′ ∈ NF⇒ t→→β t ′,
2. t =β t ′, t =β t ′′, t ′, t ′′ ∈ NF⇒ t ′ ≡ t ′′.
Remind the following statement: if t =β t ′ and t ′ ∈ NF, then t →→β t ′ and

→→β is the left β -reduction (i.e. the β -reduction where, each time, the leftmost
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β -redex is taken). We will also use the following statement: If term t ∈ Λ has not
head normal form, then a term tτ has not head normal form too, where τ ∈ Λ.

We introduce the following notations for some terms to be used in below:
I ≡ λx.x, T ≡ λxy.x, F ≡ λxy.y, Ω ≡ (λx.xx)(λx.xx), if t1 then t2 else t3 ≡ t1t2t3,
Zero≡ λx.xT, 〈⊥〉 ≡ Ω,〈0〉 ≡ I,〈n+ 1〉 ≡ λx.xF〈n〉, where x,y ∈ V, t1, t2, t3 ∈ Λ,
n ∈ N. It is easy to see that: the term Ω does not have a head normal form, if T then
t2 else t3 =β t2, if F then t2 else t3 =β t3, Zero〈0〉=β T, Zero〈n+1〉=β F, Zero〈⊥〉
does not have a head normal form, term 〈n〉 is closed normal form, and if n1 6= n2,
then 〈n1〉 and 〈n2〉 are not congruent terms, where n,n1,n2 ∈ N.

D e f i n i t i o n 5 . A function ϕ : Mk→M, k ≥ 1, is said to be λ -definable
if there exists such term Φ ∈ Λ, that for all m1, . . . ,mk ∈M we have:

Φ〈m1〉 . . .〈mk〉=β 〈ϕ(m1, . . . ,mk)〉, if ϕ(m1, . . . ,mk) 6=⊥ and
Φ〈m1〉 . . .〈mk〉 does not have a head normal form, if ϕ(m1, . . . ,mk) =⊥.
The term Φ is said to be the term which λ -defines the function ϕ.
On λ -Definability of Computable, Monotonic, Arithmetical Functions

with Indeterminate Values of Arguments. In [2] it was shown, that every
λ -definable arithmetical function with indeterminate values of arguments is
monotonic and computable. Therefore, exploring the λ -definability of arithmetical
functions with indeterminate values of arguments, we consider the set of computable,
monotonic arithmetical functions with indeterminate values of arguments.

T h e o r e m 1 . Every computable, monotonic, 1-ary arithmetical function
with indeterminate values of arguments is λ -definable.

P r o o f . Let ϕ : M → M be computable, monotonic 1-ary arithmetical
function with indeterminate values of arguments. If ϕ(⊥) = ⊥, then ϕ will be
computable, naturally extended arithmetical function with indeterminate values of
arguments, and from the [2] follows, that ϕ will be λ -definable. If ϕ(⊥) = n, where
n ∈ N, then ϕ(m) = n, for all m ∈M, because the function ϕ is monotonic, and term
Φ≡ λx.〈n〉, where x ∈V, λ -defines the function ϕ. �

T h e o r e m 2 . Every computable, monotonic, k-ary (k ≥ 2) arithmetical
function with indeterminate values of arguments ϕ : Mk→M is not λ -definable if ϕ

satisfies the following conditions: ϕ(⊥,⊥, . . . ,⊥) = ⊥ and there exist such natural
number s, 2≤ s≤ k, and such sequences of values of arguments of function ϕ

m11,m12, . . . ,m1s,ms+1, . . . ,mk
m21,m22, . . . ,m2s,ms+1, . . . ,mk

. . .
ms1,ms2, . . . ,mss,ms+1, . . . ,mk,

where mi j ∈M, mii =⊥, i, j = 1, . . . ,s, ms+r ∈M, r = 1, . . . ,k− s, that
ϕ(⊥,⊥, . . . ,⊥,ms+1, . . . ,mk) =⊥ and

ϕ(⊥,m12, . . . ,m1s,ms+1, . . . ,mk) 6=⊥
ϕ(m21,⊥, . . . ,m2s,ms+1, . . . ,mk) 6=⊥

. . .
ϕ(ms1,ms2, . . . ,⊥,ms+1, . . . ,mk) 6=⊥.
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This property of computable, monotonic, k-ary (k ≥ 2) arithmetical functions
with indeterminate values of arguments, will be called the diagonal property of such
functions.

P r o o f . Let the function ϕ has the diagonal property. Let us show that
the function ϕ is not λ -definable. Assume that the function ϕ is λ -definable and a
term Φ λ -defines the function ϕ . We define the function ψ : Ms → M as follows:
for all m1,m2, . . . ,ms ∈M,ψ(m1,m2, . . . ,ms) = ϕ(m1,m2, . . . ,ms,ms+1, . . . ,mk). It is
easy to see that ψ is computable, monotonic, s-ary (s≥ 2) arithmetical function with
indeterminate values of arguments for which ψ(⊥,⊥, . . . ,⊥) =⊥ and

ψ(⊥,m12, . . . ,m1s) 6=⊥
ψ(m21,⊥, . . . ,m2s) 6=⊥

. . .
ψ(ms1,ms2, . . . ,⊥) 6=⊥.

Since the term Φ, by hypothesis, λ -defines the function ϕ, the term
Ψ ≡ λx1 . . .xs.Φx1 . . .xs〈ms+1〉 . . .〈mk〉, where xi ∈ V, i 6= j⇒ xi 6= x j, i, j = 1, . . . ,s,
λ -defines the function ψ . Let us regard the term Ψy1 . . .ys, where y1, . . . ,ys are pair-
wise distinct variables that are not used in the term Ψ. Since ψ(⊥,m12, . . . ,m1s) 6=⊥,
the term ΨΩ〈m12〉 . . .〈m1s〉 has a closed normal form and by the left β -reduction
of the term Ψy1 . . .ys, we cannot get a term t, in which y1 is the leftmost occur-
rence of a free variable, which is on the left of the leftmost β -redex of the term t
(otherwise, the term ΨΩ〈m12〉 . . .〈m1s〉 will not have a normal form). Further, since
ψ(m21,⊥, . . . ,m2s) 6=⊥, the term Ψ〈m21〉Ω〈m23〉 . . .〈m2s〉 has a closed normal form
and by the left β -reduction of the term Ψy1 . . .ys, we cannot get a term t, in which y2
is the leftmost occurrence of a free variable, which is on the left of the leftmost
β -redex of the term t (otherwise, the term Ψ〈m21〉Ω〈m23〉 . . .〈m2s〉 will not have
a normal form) and so on. Finally, since ψ(ms1,ms2, . . . ,mss−1,⊥) 6= ⊥, the term
Ψ〈ms1〉〈ms2〉 . . .〈mss−1〉Ω has a closed normal form and by the left β -reduction of
the term Ψy1 . . .ys we cannot get a term t, in which ys is the leftmost occurrence of
a free variable, which is on the left of the leftmost β -redex of the term t (otherwise,
the term Ψ〈ms1〉〈ms2〉 . . .〈mss−1〉Ω will not have a normal form). Thus, by the left
β -reduction of the term Ψy1 . . .ys we can get a closed normal form. Therefore, by
the left β -reduction of the term ΨΩΩ . . .Ω we can get the same closed normal form.
Contradiction, since ψ(⊥,⊥, . . . ,⊥) = ⊥ and the term ΨΩΩ . . .Ω does not have a
normal form. Therefore, the function ϕ is not λ -definable. �

Consider the functions cond : M3→M and g : M3→M, for all m1,m2,m3 ∈M
we have:

cond(m1,m2,m3) =


m2, if m1 6=⊥, m1 ≥ 1 or m2 = m3,
m3, if m1 6=⊥, m1 = 0 or m2 = m3,
⊥, otherwise;

g(m1,m2,m3) =


0, if m1 = 0, m3 6=⊥, m3 ≥ 1 or

m2 6=⊥, m2 ≥ 1, m3 = 0 or
m1 6=⊥, m1 ≥ 1, m2 = 0,

⊥, otherwise.
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It is easy to see that cond and g are strong computable, monotonic arith-
metical functions with indeterminate values of arguments. It is also easy to see
that the functions cond and g have diagonal property, since cond(⊥,⊥,⊥) = ⊥,
cond(⊥,⊥,0) = ⊥, cond(⊥,0,0) = 0, cond(0,⊥,0) = 0, here k = 3, s = 2, and
g(⊥,⊥,⊥) = ⊥, g(⊥,1,0) = 0, g(0,⊥,1) = 0, g(1,0,⊥) = 0, here k = s = 3.
Therefore, the functions cond and g are not λ -definable.

Now we give examples of strong computable, monotonic, not naturally ex-
tended, arithmetical functions with indeterminate values of arguments i f : M3→M
and h : M3 → M, which have no diagonal property and are λ -definable. For all
m1,m2,m3 ∈M we have:

i f (m1,m2,m3) =


m2, if m1 6=⊥, m1 ≥ 1,
m3, if m1 6=⊥, m1 = 0,
⊥, if m1 =⊥;

h(m1,m2,m3) =


0, if m1 = 0, m3 6=⊥, m3 ≥ 1 or

m2 6=⊥, m2 ≥ 1, m3 = 0,
⊥, otherwise.

The following terms If and H, λ -define the functions i f and h respectively:

If ≡ λxyz.(Zero x)zy,

H ≡ λxyz. if Zero z then(if Zero y then Ω else〈0〉)else(if Zero x then〈0〉elseΩ).

We formulate a corollary of Theorem 2, which is a special case of Theorem 2
for k = 2.

C o r o l l a r y 1 (Theorem 2). Every computable, monotonic, 2-ary arith-
metical function with indeterminate values of arguments ϕ : M2 → M, for which
ϕ(⊥,⊥) = ⊥ and there exist such n1,n2 ∈ N, that ϕ(⊥,n2) 6= ⊥ and ϕ(n1,⊥) 6= ⊥,
is not λ -definable.

Consider functions mul : M2 → M, ∧ : M2 → M and ∨ : M2 → M, for all
m1,m2 ∈M, we have:

mul(m1,m2) =


0, if m1 = 0, or m2 = 0,
m1 ∗m2, if m1 6=⊥, and m2 6=⊥,
⊥, otherwise;

∧(m1,m2) =


0, if m1 = 0, or m2 = 0,
1, if m1 6=⊥, m2 6=⊥, and m1 ≥ 1, m2 ≥ 1,
⊥, otherwise;

∨(m1,m2) =


0, if m1 = 0, and m2 = 0,
1, if m1 6=⊥, m1 ≥ 1, or m2 6=⊥,m2 ≥ 1,
⊥, otherwise.

It is easy to see that mul, ∧ and ∨ are strong computable, monotonic
arithmetical functions with indeterminate values of arguments. It is also easy to
see that the functions mul, ∧ and ∨ have the diagonal property, since mul(⊥,⊥) =⊥,
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mul(⊥,0) = 0, mul(0,⊥) = 0, ∧(⊥,⊥) = ⊥, ∧(⊥,0) = 0, ∧(0,⊥) = 0, and
∨(⊥,⊥) = ⊥, ∨(⊥,1) = 1, ∨(1,⊥) = 1. Therefore, the functions mul,∧ and ∨ are
not λ -definable.

Now we give examples of strong computable, monotonic, not naturally ex-
tended, arithmetical functions with indeterminate values of arguments andl : M2→M
and andr : M2 → M, which have no diagonal property and are λ -definable. For all
m1,m2 ∈M we have:

andl(m1,m2) =


0, if m1 = 0, or m1 6=⊥, m1 ≥ 1, m2 = 0,
1, if m1 6=⊥, m2 6=⊥ and m1 ≥ 1, m2 ≥ 1,
⊥, otherwise;

andr(m1,m2) =


0, if m2 = 0, or m2 6=⊥, m2 ≥ 1, m1 = 0,
1, if m1 6=⊥, m2 6=⊥ and m1 ≥ 1, m2 ≥ 1,
⊥, otherwise.

The following terms Andl and Andr, λ -define the functions andl and andr
respectively:

Andl≡ λxy.if Zero x then〈0〉else (if Zero y then〈0〉else〈1〉),

Andr≡ λxy.if Zero y then〈0〉else (if Zero x then〈0〉else〈1〉).

Now we give examples of strong computable, monotonic, not naturally ex-
tended, arithmetical functions with indeterminate values of arguments orl : M2→M
and orr : M2 → M, which have no diagonal property and are λ -definable. For all
m1,m2 ∈M we have:

orl(m1,m2) =


0, if m1 = 0 and m2 = 0,
1, if m1 6=⊥, m1 ≥ 1 or m1 = 0, m2 6=⊥, m2 ≥ 1,
⊥, otherwise;

orr(m1,m2) =


0, if m1 = 0 and m2 = 0,
1, if m2 6=⊥, m2 ≥ 1 or m2 = 0, m1 6=⊥, m1 ≥ 1,
⊥, otherwise.

The following terms Orl and Orr, λ -define the functions orl and orr
respectively:

Orl≡ λxy.if Zero x then (if Zero y then〈0〉else〈1〉)else〈1〉,

Orr≡ λxy.if Zero y then (if Zero x then〈0〉else〈1〉)else〈1〉.

Algorithmic Problems. Speaking about the algorithmic problems for
computable arithmetical functions with indeterminate values of arguments, we
believe that each of them is given by its algorithm.

T h e o r e m 3 . The λ -definability problem for strong computable,
monotonic, k-ary arithmetical functions with indeterminate values of arguments is
unsolvable for any k ≥ 2.
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P r o o f . Let T0,T1, . . .Tn, . . . be an effective numeration of Turing machines
(see [4]), n ∈ N. For each n ∈ N we define the function fn : Mk → M, k ≥ 2, by
describing its algorithm. For all m1,m2, . . . ,mk ∈M we have:

fn(m1,m2 . . . ,mk) =



0, if m1 6=⊥,m2 =⊥ and Turing machine Tn

halts on 0 after ≤ m1 steps, or
if m1 =⊥,m2 6=⊥ and Turing machine Tn

halts on 0 after ≤ m2 steps, or
if m1 6=⊥,m2 6=⊥ and Turing machine Tn

halts on 0 after ≤max(m1,m2) steps,
⊥, otherwise.

It is easy to see that for any n ∈ N fn is strong computable, monotonic
arithmetical function with indeterminate values of arguments. If Turing machine
Tn halts on 0, than the function fn has the diagonal property, since there exists such
n1 ∈N, that for all m3, . . . ,mk ∈M, fn(⊥,⊥,m3, . . . ,mk) =⊥, fn(⊥,n1,m3, . . . ,mk) =
= 0, fn(n1,⊥,m3, . . . ,mk) = 0 and, therefore, fn is not λ -definable. If Turing machine
Tn does not halt on 0, than for all m1, . . . ,mk ∈M, fn(m1, . . . ,mk) = ⊥, and the term
Φ ≡ λx1 . . .xk.Ω λ -defines the function fn, therefore, fn is λ -definable. Thus, the
assumption of the solvability of the λ -definability problem for strong computable,
monotonic, k-ary (k ≥ 2) arithmetical functions with indeterminate values of argu-
ments, would lead to the solvability of the halting problem of Turing machines. �

C o r o l l a r y 2 (Theorem 3). The λ -definability problem for computable,
monotonic, k-ary arithmetical functions with indeterminate values of arguments is
unsolvable for any k ≥ 2.

T h e o r e m 4. The diagonal property for strong computable, monotonic,
k-ary arithmetical functions with indeterminate values of arguments is unsolvable for
any k ≥ 2.

P r o o f . The proof repeats the proof of Theorem 3. It is easy to see, that
for any n ∈ N we have: Turing machine Tn halts on 0⇔ function fn has the diagonal
property. Thus, the assumption of the solvability of the diagonal property for strong
computable, monotonic, k-ary (k ≥ 2) arithmetical functions with indeterminate
values of arguments, would lead to the solvability of the halting problem of Turing
machines. �

C o r o l l a r y 3 (Theorem 4). The diagonal property for computable,
monotonic, k-ary arithmetical functions with indeterminate values of arguments is
unsolvable for any k ≥ 2.

T h e o r e m 5 . The monotonicity property for strong computable, k-ary
arithmetical functions with indeterminate values of arguments is unsolvable for any
k ≥ 1.

P r o o f . Let T0,T1, . . . ,Tn, . . . be an effective numeration of Turing machines
(see [4]), n ∈ N. For each n ∈ N we define the function fn : Mk → M, k ≥ 1, by
describing its algorithm. For all m1,m2, . . . ,mk ∈M we have:

fn(m1, . . . ,mk) =


0, if m1 =⊥ or m1 6=⊥ and Turing machine Tn

does not halt on 0 after m1 steps,
⊥, otherwise.
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It is easy to see that for any n∈N fn is strong computable, arithmetical function
with indeterminate values of arguments. If Turing machine Tn does not halt on 0,
than for all m1, . . . ,mk ∈ M, fn(m1, . . . ,mk) = 0 and, obviously, the function fn is
monotonic. If Turing machine Tn halts on 0, than there exists such n1 ∈ N, that for
all m2, . . . ,mk ∈ M, fn(⊥,m2, . . . ,mk) = 0, fn(n1,m2, . . . ,mk) = ⊥ and, obviously,
the function fn is not monotonic. Thus, the assumption of the solvability of the
monotonicity property for strong computable, monotonic, k-ary (k ≥ 1) arithmetical
functions with indeterminate values of arguments, would lead to the solvability of the
halting problem of Turing machines. �

C o r o l l a r y 4 (Theorem 5). The monotonicity property for computable,
k-ary arithmetical functions with indeterminate values of arguments is unsolvable for
any k ≥ 1.
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