COMMUNICATIONS

Mathematics

ON LEBESGUE CONSTANTS OF VILENKIN SYSTEMS

S. A. SARGSYAN *

Chair of Higher Mathematics, Department of Physics YSU, Armenia

In the paper some properties of Lebesgue constants $\left\{L_{n}(W)\right\}_{n=1}^{\infty}$ of Vilenkin system are investigated. Non almost convergence property for the sequence $\left\{\frac{L_{n}(W)}{\log _{2} n}\right\}_{n=2}^{\infty}$ is obtained.

MSC2010: Primary 42C10, Secondary 42B08.
Keywords: Vilenkin system, Lebesgue constants, almost convergence.
Introduction. Let $\Psi=\left\{\psi_{k}(x)\right\}_{k=1}^{\infty}$ be an orthonormal system of functions defined on $[a, b]$. The Lebesgue constants of Ψ is defined as follows:

$$
L_{n}(\Psi, x):=\int_{a}^{b}\left|\sum_{k=1}^{n} \psi_{k}(x) \overline{\psi_{k}(t)}\right| d t \text { (here } \bar{x} \text { means the complex conjugate of } x \text {). }
$$

If this functions are independent on x, then they are called Lebesgue constants $\left\{L_{n}(\Psi)\right\}_{n=1}^{\infty}$ of system Ψ. Recall the definition of Vilenkin systems. Consider an arbitrary sequence of natural numbers $P \equiv\left\{p_{1}, p_{2}, \ldots, p_{k}, \ldots\right\}$, where $p_{j} \geq 2$ for all $j \in \mathbb{N}$.

Let denote $m_{0}=1, m_{k}=\prod_{j=1}^{k} p_{j} \quad\left(p_{j} \geq 2\right)$.
It is easy to see that for each $x \in[0,1)$ and for each $n \in \mathbb{N}$ there exist integers $x_{j}, \alpha_{j} \in\left\{0,1, \ldots p_{j}-1\right\}$ (in the case $x=\frac{l}{m_{k}}, l \in \mathbb{N}, 0 \leq l \leq m_{k}-1$, we take $x_{j}=0$ for all $j>k)$, so that $n=\sum_{j=1}^{\infty} \alpha_{j} m_{j-1}$ and $x=\sum_{j=1}^{\infty} \frac{x_{j}}{m_{j}}(P$-adic expansions).

[^0]Vilenkin or multiplicative system with respect to the sequence P is defined as follows:

$$
W_{0}(x) \equiv 1 ; W_{n}(x)=\exp \left(2 \pi i \sum_{j=1}^{k} \alpha_{j} \frac{x_{j}}{p_{j}}\right)
$$

Obviously the nth function can be represented by

$$
W_{n}(x)=\prod_{j=1}^{k}\left(W_{m_{j-1}}(x)\right)^{\alpha_{j}}
$$

Note that systems corresponding to distinct sequences $P=\left\{p_{k}\right\}$ are different, in particular, if $P \equiv\{2,2, \ldots, 2, \ldots\}$ the Vilenkin system coincides with the Walsh one (see [1]). The theory of these systems was developed by N. Ya. Vilenkin in 1946 (see [2,3]).

The Lebesgue constants of Vilenkin system have the form

$$
\begin{equation*}
L_{n}(W)=\int_{0}^{1}\left|D_{n}(t)\right| d t \tag{1}
\end{equation*}
$$

where $D_{n}(t)=\sum_{k=0}^{n-1} W_{k}(t)$ is the nth Dirichlet kernel of Vilenkin system.
It is known [4] that $\lim _{n \rightarrow \infty} \frac{L_{n}(T)}{\ln n}=\frac{4}{\pi}$, where T is the trygonometric system. Note that, in contrast to this, for the Vilenkin system it was proved [3] that

$$
\begin{equation*}
0=\liminf _{n \rightarrow \infty} \frac{L_{n}(W)}{\log _{2} n}<\limsup _{n \rightarrow \infty} \frac{L_{n}(W)}{\log _{2} n}<\infty . \tag{2}
\end{equation*}
$$

Recall that a bounded sequence $\left\{x_{n}\right\}_{n=1}^{\infty}$ is called almost convergent, if for some $a \in \mathbb{R}$ we have $\lim _{n \rightarrow \infty} \frac{1}{n} \sum_{k=m+1}^{m+n} x_{k}=a$ uniformly by m. Denote

$$
q\left(x_{n}\right)=\lim _{n \rightarrow \infty} \inf _{m \in \mathbb{N}} \frac{1}{n} \sum_{k=m+1}^{m+n} x_{k} \text { and } p\left(x_{n}\right)=\lim _{n \rightarrow \infty} \sup _{m \in \mathbb{N}} \frac{1}{n} \sum_{k=m+1}^{m+n} x_{k}
$$

This limits exist for every bounded sequence, and obviously the almost convergence of a sequence $\left\{x_{n}\right\}_{n=1}^{\infty}$ is equivalent to the condition $q\left(x_{n}\right)=p\left(x_{n}\right)$ (see [5,6]). In this paper we prove the following
Theorem 1. For any Vilenkin system the following equivalencies are true:

1. $q\left(\frac{L_{n}(W)}{\log _{2} n}\right)=0\left(=\liminf _{n \rightarrow \infty} \frac{L_{n}(W)}{\log _{2} n}\right)$;
2. $p\left(\frac{L_{n}(W)}{\log _{2} n}\right)=\limsup _{n \rightarrow \infty} \frac{L_{n}(W)}{\log _{2} n}<\infty$.

From this Theorem as a direct consequence we obtain that the sequence $\left\{\frac{L_{n}(W)}{\log _{2} n}\right\}_{n=2}^{\infty}$ is not almost convergent. Note that the analogues result for the Walsh system is formulated in [6].

Auxiliary Propositions. We will use the following properties of Vilenkin system

$$
\begin{gather*}
L_{m_{k}}(W)=1, k=0,1, \ldots \tag{3}\\
W_{l m_{k}+\beta}(x)=W_{l m_{k}}(x) W_{\beta}(x), \text { if } \beta<m_{k}(k, l, \beta \in \mathbb{N}) . \tag{4}
\end{gather*}
$$

From (4) we get

$$
\begin{align*}
& D_{m_{k}+r}(t) \equiv \sum_{j=0}^{m_{k}-1} W_{j}(t)+W_{m_{k}}(t) \sum_{j=0}^{r-1} W_{j}(t) \equiv \tag{5}\\
& \equiv D_{m_{k}}(t)+W_{m_{k}}(t) D_{r}(t) \text { for all } 1<r \leq m_{k}
\end{align*}
$$

Proof of Main Result. Let us begin with a proof of first equation.
We put

$$
l_{n}:=\frac{L_{n}(W)}{\log _{2} n}, \check{l_{n}}=\inf _{m \in \mathbb{N}} \frac{1}{n} \sum_{k=m+1}^{m+n} l_{k} \text { and } \hat{l_{n}}=\sup _{m \in \mathbb{N}} \frac{1}{n} \sum_{k=m+1}^{m+n} l_{k}
$$

Let $\varepsilon>0$ be an arbitrary positive number and $n \in \mathbb{N}$. Obviously there exists $k \in \mathbb{N}$ depending on n such that

$$
\begin{equation*}
m_{k}>n \text { and } \frac{1}{k}\left(\frac{1}{n} \sum_{r=1}^{n}\left(1+L_{r}\right)\right)<\varepsilon . \tag{6}
\end{equation*}
$$

From (1), (3) and (5) we obtain

$$
L_{m_{k}+r} \leq 1+L_{r} \text { for all } 1 \leq r \leq n
$$

Combining this with (6) and taking into consideration a relation $m_{k} \geq 2^{k}$, we get

$$
\frac{1}{n} \sum_{j=m_{k}+1}^{m_{k}+n} l_{j} \leq \frac{1}{k}\left(\frac{1}{n} \sum_{r=1}^{n}\left(1+L_{r}\right)\right)<\varepsilon
$$

Therefore, we have $0 \leq \check{l_{n}}<\varepsilon$ for any natural number n, and eventually since ε is arbitrary we get the first equation $q\left(l_{n}\right)=0$.

Next we prove that $\lim _{r \rightarrow \infty} \hat{l}_{r} \geq c$. We put

$$
\begin{equation*}
c=\limsup _{n \rightarrow \infty} l_{n}, \quad c_{1}=\sup _{n \in \mathbb{N}} l_{n} \tag{7}
\end{equation*}
$$

Let r be any natural number and $\varepsilon>0$. We fix $k_{0} \in \mathbb{N}$ such that $m_{k_{0}} \geq r$, then we take $n_{0} \in \mathbb{N}\left(n_{0}>m_{k_{0}}\right)$, so that

$$
\begin{equation*}
l_{n_{0}}>c-\frac{\varepsilon}{3}, \frac{\log _{2} m_{k_{0}}}{\log _{2}\left(n_{0}-m_{k_{0}}\right)}<\frac{\varepsilon}{6 c_{1}} \text { and } \frac{\log _{2} n_{0}}{\log _{2}\left(n_{0}+m_{k_{0}}\right)}>1-\frac{\varepsilon}{3(c+1)} \tag{8}
\end{equation*}
$$

The P-adic expansion of n_{0} has the form $n_{0}=\sum_{j=0}^{k} \alpha_{j} m_{j}$. Denote

$$
\begin{equation*}
n_{0}^{\prime}:=\sum_{j=k_{0}}^{k} \alpha_{j} m_{j} \tag{9}
\end{equation*}
$$

Let $n \in\left[n_{0}^{\prime}, n_{0}^{\prime}+m_{k_{0}}\right)$. By the same argument as in (5] we get

$$
D_{n}(t) \equiv D_{n_{0}^{\prime}}(t)+W_{n_{0}^{\prime}}(t) D_{n-n_{0}^{\prime}}(t)
$$

Thus, from (1) and reverse triangle inequality, we obtain

$$
L_{n} \geq L_{n_{0}^{\prime}}-L_{n-n_{0}^{\prime}} \text { and } L_{n_{0}^{\prime}} \geq L_{n_{0}}-L_{n-n_{0}^{\prime}} .
$$

Hence (see also (7),

$$
L_{n} \geq L_{n_{0}}-2 L_{n-n_{0}^{\prime}} \geq L_{n_{0}}-2 c_{1} \log _{2} m_{k_{0}} .
$$

From this and (8), (97) we have

$$
\begin{equation*}
l_{n} \geq \frac{L_{n_{0}}}{\log _{2} n_{0}}\left(\frac{\log _{2} n_{0}}{\log _{2} n}\right)-2 \frac{c_{1} \log _{2} m_{k_{0}}}{\log _{2} n}>c-\varepsilon . \tag{10}
\end{equation*}
$$

From (10) we get

$$
\frac{1}{r} \sum_{n=n_{0}^{\prime}+1}^{n_{0}^{\prime}+r} l_{n}>c-\varepsilon,
$$

which implies $\hat{l}_{r} \geq c-\varepsilon$, and from arbitrariness of r and ε we obtain that $\lim _{r \rightarrow \infty} \hat{l}_{r} \geq c$. It remains to show that $\lim _{r \rightarrow \infty} \hat{l}_{r} \leq c$.

Again we take $\varepsilon>0$ to be an arbitrary number, then we choose natural numbers k_{0} and $k_{0}^{\prime}>k_{0}$ such that

$$
\begin{equation*}
l_{k}<c+\frac{\varepsilon}{2} \text { for all } k \geq k_{0} \text { and } \frac{1}{k_{0}^{\prime}} \sum_{k=1}^{k_{0}} l_{k}<\frac{\varepsilon}{2} . \tag{11}
\end{equation*}
$$

If $m<k_{0}$ or all $r \geq k_{0}^{\prime}$, we have

$$
\begin{equation*}
\frac{1}{r} \sum_{k=m+1}^{m+r} l_{k}=\frac{1}{r} \sum_{k=m+1}^{k_{0}} l_{k}+\frac{1}{r} \sum_{k=k_{0}+1}^{m+r} l_{k} . \tag{12}
\end{equation*}
$$

From (11) and (12) we get

$$
\frac{1}{r} \sum_{k=m+1}^{m+r} l_{k} \leq c+\varepsilon \text { for all } r \geq k_{0}^{\prime} .
$$

If $m \geq k_{0}$, then from (11) for all $r \in \mathbb{N}$ we obtain

$$
\frac{1}{r} \sum_{k=m+1}^{m+r} l_{k} \leq c+\frac{\varepsilon}{2} .
$$

Hence, $\hat{l}_{r} \leq c+\varepsilon$ for all $r \geq k_{0}^{\prime}$ and eventually we get $\lim _{r \rightarrow \infty} \hat{l}_{r} \leq c$.
Received 08.02.2016

REFERENCES

1. Golubov B.I., Efimov A.V., Skvortsov V.A. Walsh Series and Transforms: Theory and Applications. Dordrecht: Kluwer Academic Publishers, 1991.
2. Agaev G.N., Vilenkin N.Ya., Dzhafarli G.M., Rubinshtein A.I. Multiplicative Systems of Functions and Harmonic Analysis on Zero-Dimensional Groups. Baku: ELM, 1981 (in Russian).
3. Vilenkin N.Ya. On a Class of Complete Orthonormal Systems. // Izv. Akad. Nauk SSSR, 1947, v. 11, p. 363-400 (in Russian).
4. Bari N.K. Trigonometric Series. M.: Fizmatlit, 1961 (in Russian).
5. Sucheston L. Banach Limits. // Amer. Math. Monthly, 1967, v. 74, p. 308-311.
6. Astashkin S.V., Semenov E.M. Lebesgue Constants of the Walsh System. // Doklady Akademii Nauk, ser. Matematica, 2015, v.91, № 3, p. 344-346.

[^0]: * E-mail: stepansargsyan@ysu.am

