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In the paper some properties of Lebesgue constants
{

Ln(W )
}∞

n=1 of Vilenkin
system are investigated. Non almost convergence property for the sequence{

Ln(W )

log2 n

}∞

n=2
is obtained.
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Introduction. Let Ψ = {ψk(x)}∞
k=1 be an orthonormal system of functions

defined on [a,b]. The Lebesgue constants of Ψ is defined as follows:

Ln(Ψ,x) :=
b∫

a

∣∣∣∣∣ n

∑
k=1

ψk(x)ψk(t)

∣∣∣∣∣dt (here x means the complex conjugate of x).

If this functions are independent on x, then they are called Lebesgue constants
{Ln(Ψ)}∞

n=1 of system Ψ. Recall the definition of Vilenkin systems. Consider an
arbitrary sequence of natural numbers P≡ {p1, p2, . . . , pk, . . .} , where p j ≥ 2 for all
j ∈ N.

Let denote m0 = 1, mk =
k

∏
j=1

p j (p j ≥ 2).

It is easy to see that for each x ∈ [0,1) and for each n ∈ N there exist integers

x j,α j ∈
{

0,1, . . . p j−1
} (

in the case x =
l

mk
, l ∈N, 0≤ l ≤mk−1, we take x j = 0

for all j > k
)
, so that n =

∞

∑
j=1

α jm j−1 and x =
∞

∑
j=1

x j

m j
(P-adic expansions).
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Vilenkin or multiplicative system with respect to the sequence P is defined as
follows:

W0(x)≡ 1; Wn(x) = exp

(
2πi

k

∑
j=1

α j
x j

p j

)
.

Obviously the nth function can be represented by

Wn(x) =
k

∏
j=1

(Wm j−1(x))
α j .

Note that systems corresponding to distinct sequences P = {pk} are different,
in particular, if P ≡ {2,2, . . . ,2, . . .} the Vilenkin system coincides with the Walsh
one (see [1]). The theory of these systems was developed by N. Ya. Vilenkin in 1946
(see [2, 3]).

The Lebesgue constants of Vilenkin system have the form

Ln(W ) =
∫ 1

0
|Dn(t)|dt, (1)

where Dn(t) =
n−1

∑
k=0

Wk(t) is the nth Dirichlet kernel of Vilenkin system.

It is known [4] that lim
n→∞

Ln(T )
lnn

=
4
π
, where T is the trygonometric system.

Note that, in contrast to this, for the Vilenkin system it was proved [3] that

0 = liminf
n→∞

Ln(W )

log2 n
< limsup

n→∞

Ln(W )

log2 n
< ∞. (2)

Recall that a bounded sequence {xn}∞
n=1 is called almost convergent, if for some

a ∈ R we have lim
n→∞

1
n

m+n

∑
k=m+1

xk = a uniformly by m. Denote

q(xn) = lim
n→∞

inf
m∈N

1
n

m+n

∑
k=m+1

xk and p(xn) = lim
n→∞

sup
m∈N

1
n

m+n

∑
k=m+1

xk.

This limits exist for every bounded sequence, and obviously the almost conver-
gence of a sequence {xn}∞

n=1 is equivalent to the condition q(xn) = p(xn) (see [5,6]).
In this paper we prove the following
T h e o r e m 1. For any Vilenkin system the following equivalencies are true:

1. q
(

Ln(W )

log2 n

)
= 0

(
= liminf

n→∞

Ln(W )

log2 n

)
;

2. p
(

Ln(W )

log2 n

)
= limsup

n→∞

Ln(W )

log2 n
< ∞.

From this Theorem as a direct consequence we obtain that the sequence{
Ln(W )

log2 n

}∞

n=2
is not almost convergent. Note that the analogues result for the Walsh

system is formulated in [6].



Sargsyan S. A. On Lebesgue Constants of Vilenkin Systems. 65

Auxiliary Propositions. We will use the following properties of Vilenkin
system

Lmk(W ) = 1, k = 0,1, . . . , (3)

Wlmk+β (x) =Wlmk(x)Wβ (x), if β < mk (k, l,β ∈ N). (4)

From (4) we get

Dmk+r(t)≡
mk−1

∑
j=0

Wj(t)+Wmk(t)
r−1

∑
j=0

Wj(t)≡

≡ Dmk(t)+Wmk(t)Dr(t) for all 1 < r ≤ mk.

(5)

Proof of Main Result. Let us begin with a proof of first equation.
We put

ln :=
Ln(W )

log2 n
, ľn = inf

m∈N

1
n

m+n

∑
k=m+1

lk and l̂n = sup
m∈N

1
n

m+n

∑
k=m+1

lk.

Let ε > 0 be an arbitrary positive number and n ∈ N. Obviously there exists k ∈ N
depending on n such that

mk > n and
1
k

(
1
n

n

∑
r=1

(1+Lr)

)
< ε. (6)

From (1), (3) and (5) we obtain

Lmk+r ≤ 1+Lr for all 1≤ r ≤ n.

Combining this with (6) and taking into consideration a relation mk ≥ 2k, we get

1
n

mk+n

∑
j=mk+1

l j ≤
1
k

(
1
n

n

∑
r=1

(1+Lr)

)
< ε.

Therefore, we have 0 ≤ ľn < ε for any natural number n, and eventually since ε is
arbitrary we get the first equation q(ln) = 0.

Next we prove that lim
r→∞

l̂r ≥ c. We put

c = limsup
n→∞

ln, c1 = sup
n∈N

ln. (7)

Let r be any natural number and ε > 0. We fix k0 ∈N such that mk0 ≥ r, then we take
n0 ∈ N (n0 > mk0), so that

ln0 > c− ε

3
,

log2 mk0

log2(n0−mk0)
<

ε

6c1
and

log2 n0

log2(n0 +mk0)
> 1− ε

3(c+1)
. (8)

The P-adic expansion of n0 has the form n0 =
k

∑
j=0

α jm j. Denote

n′0 :=
k

∑
j=k0

α jm j. (9)

Let n ∈ [n′0,n
′
0 +mk0) . By the same argument as in (5) we get

Dn(t)≡ Dn′0
(t)+Wn′0

(t)Dn−n′0
(t).
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Thus, from (1) and reverse triangle inequality, we obtain
Ln ≥ Ln′0

−Ln−n′0
and Ln′0

≥ Ln0−Ln−n′0
.

Hence (see also (7)),
Ln ≥ Ln0−2Ln−n′0

≥ Ln0−2c1 log2 mk0 .

From this and (8), (9) we have

ln ≥
Ln0

log2 n0

(
log2 n0

log2 n

)
−2

c1 log2 mk0

log2 n
> c− ε. (10)

From (10) we get
1
r

n′0+r

∑
n=n′0+1

ln > c− ε,

which implies l̂r ≥ c− ε , and from arbitrariness of r and ε we obtain that lim
r→∞

l̂r ≥ c.

It remains to show that lim
r→∞

l̂r ≤ c.
Again we take ε > 0 to be an arbitrary number, then we choose natural numbers

k0 and k′0 > k0 such that

lk < c+
ε

2
for all k ≥ k0 and

1
k′0

k0

∑
k=1

lk <
ε

2
. (11)

If m < k0 or all r ≥ k′0, we have
1
r

m+r

∑
k=m+1

lk =
1
r

k0

∑
k=m+1

lk +
1
r

m+r

∑
k=k0+1

lk . (12)

From (11) and (12) we get
1
r

m+r

∑
k=m+1

lk ≤ c+ ε for all r ≥ k′0.

If m≥ k0, then from (11) for all r ∈ N we obtain
1
r

m+r

∑
k=m+1

lk ≤ c+
ε

2
.

Hence, l̂r ≤ c+ ε for all r ≥ k′0 and eventually we get lim
r→∞

l̂r ≤ c. �
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