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Introduction. Consider the rational Calogero model, which describes one-dimensional
particles, interacting with the inverse-square potential [1]

H0 = ∑
i

p2
i

2
+

N

∑
i< j

g(g−1)
(xi− x j)2 . (1)

Apart from the N Liouville integrals, it possesses also N− 1 additional constants of motion
[2]. As a result, the system is maximally superintegrable. It possesses various integrable
generalizations with physical applications [3, 4]. Note that the high-dimensional oscillator
and Coulomb systems are the most known nontrivial superintegrable systems with second
order integrals in momentum. The Calogero system is more complicate, since most of its
integrals have higher order in momemtum.

The mixture of the Coulomb and Calogero potentials gives rise to a more general
integrable N-dimensional system [5]. Recently we have shown that the Calogero–Coulomb
system is also superintegrable [6]. An explicit form of the complete set of constants of motion
can be derived by taking proper deformations of the corresponding integrals of the underlying
Coulomb system, then forming the symmetric polynomials on them [6, 7]. This method
differs from the standard construction, so that the deformations of the Liouville integrals do
not commute any more. Nevertheless, the functional independence of the constricted integrals
of motion is preserved.

In this paper we briefly describe the N-dimensional Coulomb problem with the
additional Calogero potential [7], as well as its extension in the uniform constant electric
field given by the Stark potential [8]. We refer them shortly as the Calogero–Coulomb
and Calogero–Coulomb–Stark problems, correspondingly. Below we demonstrate that these
systems possess the deformed hidden symmetries, inherited from the well-known Rungle–
Lenz vector in the Coulomb problem.

Calogero–Coulomb Problem. The Calogero–Coulomb problem is a mixture of the
N-particle rational Calogero model (1) and of the N-dimensional Coulomb system [5]:
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Hγ =
p2

2
+

N

∑
i< j

g(g−1)
(xi− x j)2 −

γ

r
. (2)

It inherits most of the properties of the original Coulomb system and possesses hidden
symmetries given by an analog of Runge–Lenz vector [6, 7]. It is convenient to describe
this system by means of the Dunkl operators which make transparent the analogy with the
initial Coulomb problem.

Let us consider instead the extended Hamiltonian

H
gen
γ =

π2

2
− γ

r
=

p2

2
+∑

i< j

g(g− si j)

(xi− x j)2 −
γ

r
. (3)

The modified momentum is expressed in terms of the Dunkl operators by

π =−ı∇, ∇i = ∂i−∑
j 6=i

g
xi− x j

si j. (4)

The operator si j permutes the i-th and j-th coordinates. On the symmetric wavefunctions the
generalized Hamiltonian H

gen
γ reduces to the Calogero–Coulomb Hamiltonian (2).

The Dunkl operators commute mutually like ordinary partial derivatives. However,
their commutations with coordinates are nontrivial deformations of the Heisenberg algebra
relations [9]

[πi,x j] =−ıSi j. (5)

The operators Si j for i 6= j are just rescaled permutations:
Si j =−gsi j. (6)

In additions, the Sii are defined by the relation

∑
j

Si j = 1. (7)

Constants of Motion of Hγ . Define now the deformed angular momentum operator
via the Dunkl momentum [10, 11]:

Li j = xiπ j− x jπi. (8)
It preserves the generalized Calogero–Coulomb Hamiltonian and satisfies the deformed
angular momentum commutation relations [10].

The deformed Runge–Lenz vector, preserving as well the same Hamiltonian, reads [7]

Ai =
1
2 ∑

j

{
Li j,π j

}
+

ı
2
[πi,S]−

γxi

r
. (9)

It contains the permutation-group invariant element, which vanishes in the absence of the
Calogero term

S = ∑
i< j

Si j. (10)

The Calogero–Coulomb problem can be obtained by the restriction of the extended
Hamiltonian (3) to the symmetric wavefunctions. Therefore, its constants of motion can be
constructed by taking the symmetric polynomials on the components of the Dunkl angular
momentum and Runge–Lenz vector [6, 7]:

L2k = ∑
i< j

L2k
i j , Ak = ∑

i
Ak

i . (11)

The expressions above demonstrate that the Calogero–Coulomb problem is a superintegrable
system, like the pure Calogero [2] and Coulomb models. Note that the the square of Dunkl
angular momentum is related to the the angular part I of the Calogero Hamiltonian [10]:

L2 = 2I+S(S−N +2). (12)
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In two dimension the symmetries of the Calogero–Coulomb system, based on the dihedral
group D2, have been studied also in [12].

Coulomb–Calogero–Stark Problem. Consider the N-dimensional Coulomb problem
in constant electric field F in the presence of the Calogero interaction:

Hγ,F =
p2

2
+

N

∑
i< j

g(g−1)
(xi− x j)2 −

γ

r
+Fx0, (13)

where x0 is the normalized center-of-mass coordinate (see Eq. (16) below). The external
field is aligned in the direction (1,1, . . . ,1), which ensures the permutation invariance of the
Hamiltonian. In the absence of the external field, this model is reduced to the Calogero–
Coulomb model, considered above.

The generalized Hamiltonian is defined in terms of the Dunkl momentum (4) as
follows:

H
gen
γ,F =

π2

2
− γ

r
+Fx0. (14)

The entire Dunk angular momentum tensor (8) is not an integral of motion any more. Instead,
its components, which are orthogonal to the external field, are preserved,

L⊥i j = Li j +
1
N ∑

k
(L jk−Lik). (15)

Alternatively, one can express them in terms of the Jacobi coordinates, which separate the
center-of-mass from the relative motion. They are defined by the orthogonal map [13, 14]

x0 =
1√
N
(x1 + · · ·+ xN), x̃k =

1√
k(k+1)

(x1 + · · ·+ xk− kxk+1), (16)

where 1 ≤ k ≤ N − 1. The first coordinate describes the center of mass, while the others,
marked by tilde, characterize the relative motion.

Constants of Motion of Hγ,F . Denote now by L̃i j the components of the deformed
relative angular momentum, rotated by the Jacobi transformation. The algebra generated
by L⊥i j , in fact, coincides with the L̃i j, which are responsible for the relative motion (1 ≤ i,
j≤N−1). In the absence of Calogero interaction they form the SO(N−1) subalgebra, which
describes the rotations in the hyperspace, orthogonal to the center-of-mass direction.

Apart from the deformed relative angular momenta, the modified component of the
Runge–Lenz vector (9) along the field direction is preserved as well. It reads

A = x0

(
2Hgen

γ,F +
γ

r

)
−
(

rpr +
N−1

2ı

)
p0−

F
2
(
r2 +3x2

0
)
. (17)

This invariant commutes with the deformed relative angular momentum.
In the g = 0 limit, one can extract from these symmetry generators the standard

Liouville integrals of the Coulomb–Stark system. The first N − 2 integrals can be chosen
to be the quadratic Casimir elements of the naturally embedded algebras

SO(2)⊂ SO(3)⊂ . . .⊂ SO(N−1). (18)

They are described in the relative angular coordinates and momenta. The last two integrals
are given by the Hamiltonian and the modified component of the Runge–Lenz vector, which
had been constructed for N = 3 in [15].

Out of the g = 0 point, we deal with the deformed quantities, and the Liouville
property can not be extended straightforwardly. Nevertheless, in the presence of a constant
uniform electric field, the generalized Calogero–Coulomb model (14) still remains integrable.

The integrals of the pure Calogero–Coulomb system (13) obtained by the restriction
to the symmetric wavefunctions, must be symmetric, too. Since the longitudinal component
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of the Runge–Lenz vector (17) obeys this condition, it remains as a correct integral for this
system:

[A,Hγ,F ] = 0. (19)

We should take symmetric expressions of the kinematical constants of motion, too, as in
the absence of the electric field [7]. For this purpose it is more suitable to use the angular
momentum in Jacobi coordinates:

[Hγ,F , L̃2k] = 0, L̃2k = ∑
1≤i< j≤N−1

L̃2k
i j . (20)

The first member of this family is the square of the relative Dunkl angular momentum. It
is related to the angular part of the Calogero model with reduced center of mass Ĩ, which
we call the relative angular Calogero Hamiltonian, by the same formula as Eq. (12) above.
So, we have proved the integrability of the Calogero–Coulomb–Stark system.

Separation of Variables in Parabolic Coordinates in Hγ,F . It is well known that
the Coulomb–Stark system admits separation of variables in parabolic coordinates. It ap-
pears that the Calogero–Coulomb–Stark system admits complete separation of variables in
parabolic coordinates for N = 2,3 and partial separation for N > 3 [8].

In the Jacobi coordinates (16), the last system acquires the following form:

Hγ,F =
p2

0
2
− γ√

x2
0 + x̃2

+Fx0 + H̃0, (21)

where the last term is the Calogero Hamiltonian (1) with reduced center of mass. We pass to
the parabolic coordinates (ξ ,η ,ϕι), where ϕι are the relative angular variables, and

ξ = r+ x0, η = r− x0. (22)

In new coordinates the Hamiltonian (21) is expressed as follows:

Hγ,F =− 2
ξ +η

(
γ +Bξ +Bη

)
+

Ĩ

ξ η
+

F
2
(ξ −η), (23)

where we have shorten the kinetic term using the notation

Bξ =
1

ξ
N−3

2

∂

∂ξ
ξ

N−1
2

∂

∂ξ
. (24)

Further we proceed by extending straightforwardly the steps, applied for the usual Coulomb
system in external field in [16]. Employing the following ansatz to the total wavefunction

Ψ(ξ ,η ,ϕι) = Φ1(ξ )Φ2(η)ψ(ϕι), (25)

we decouple Schrödinger equation

Hγ,F Ψ = EΨ (26)

into three parts. The two of them depend, respectively, on ξ and η ,(
Bξ +

E
2

ξ − F
4

ξ
2− q̃(q̃+N−3)

4ξ
+λ1

)
Φ1(ξ ) = 0, (27a)(

Bη +
E
2

η +
F
4

η
2− q̃(q̃+N−3)

4η
+λ2

)
Φ2(η) = 0, (27b)

where λ1 +λ2 = γ . The last equation describes the spectrum and eigenstates of the relative
angular Calogero model [17]:

Ĩ(ϕι ,∂ϕι
)ψq̃(ϕι) =

q̃(q̃+N−3)
2

ψq̃(ϕι). (27c)
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In particular, the spectrum is determined by the numbers

q̃ =
gN(N−1)

2
+3l3 + . . .+NlN with li = 0,1,2, . . . (28)

For integer values of the coupling g, the angular energy spectrum is that of a free particle
with angular momentum q̃ on the (N− 2)-dimensional sphere, but has a significantly lower
degeneracy due to the restriction to the symmetric wavefunctions [17].

The longitudinal component of the Runge–Lenz vector (17) separates the equations
(27a) and (27b):

AΨ = (λ2−λ1)Ψ. (29)

The second invariant, given by the relative angular Hamiltonian Ĩ, is common in both cases
and separates the relative angular degrees of freedom. As in the usual Coulomb problem [18],
the electric field completely removes the degeneracy in the orbital momentum, but preserves
the degeneracy with respect to q.
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