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Diamagnetic properties of the electron gas in a cylindrical quantum dot with parabolic
confinement potential have been investigated. The analytical expressions have been
obtained for mean energy, mean magnetization and mean magnetic susceptibility of the
electron gas. The diamagnetic character of such system has been shown.
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1. Introduction. The electron gas localized in the quantum dot may exhibit
interesting properties purely inherent to low-dimensional structures. A striking example of
what has been said is the generalization of Kohn’s theorem [1] for the cases of quantum
wells and dots [2–5]. It is clear that the multi-electron systems can demonstrate the statis-
tical properties that can be controlled by changing the geometric dimensions of the studied
nanostructures [6–8]. Particularly, in the paper [6] have been studied the thermodynamic and
magnetic properties of the cylindrical QD with asymmetrical confinement potential. It has
been shown that the magnetic properties of the system reveal the paramagnetic behavior of
the electron gas in the QD.

In this paper has been studied the diamagnetism of electron gas localized in the
cylindrical QD with parabolic confinement potential. The undisputed advantage of a chosen
model of QD is the exact solvability of it. This makes it possible to obtain a lot of analytic
results.

2. Theory. Let us consider the one-electron states in cylindrical QD with parabolic
confinement potential in the external magnetic field.

The Schrodinger equation of such system has the following form
1
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ψ +V̂con f (ρ,φ ,z)ψ = Eψ, (1)

where A is the gauge of magnetic field; µ is the effective mass of electron; V̂con f (ρ,φ ,z) is
the confinement potential of QD, which has the following form
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where ωρ ∼
h̄

µR2
0

and ωz ∼
h̄

µL2 are the radial and axial frequencies of confinement potential

accordingly; R0 and L are the radius and the height of QD.
We suppose that the magnetic field is directed along the axis of the cylinder. If we

choose magnetic gauge as following
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{
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Bρ

2

}
, (3)

where B is the magnetic field strength, then we can represent Schrodinger equation as
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ψ +V̂con f (ρ,φ ,z)ψ = Eψ, (4)

where ωB =
eB
µc

is the cyclotron frequency.

The solution of (4) has been discussed in [9], and for final wave-function and energy
we have the following expressions:
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where Hnz are Hermite polynomals, Ω =

√
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)2, aM =
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µΩ
is magnetic length,
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√
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is the oscilator length, nρ = 0,1,2, . . . , m = 0,±1,±2, . . . and nz = 0,1,2, . . .

are radial, magnetic and axial quantum numbers accordingly.
Assuming that the electron gas described with the Boltzmann statistics, for the parti-

tion function [10] we can write
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(
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)
, (7)

where β =
1

kBT
is the inverse temperature.

The partition function of the of investigated system over the discrete energy levels is
expressed in the form of triple sum
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where f± (Ω) = sechβ h̄(Ω±ωB)/4.
With the use of (8) we can calculate the thermodynamic and the magnetic parameters

of the considered system.
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For mean energy we have
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where g± (Ω) = tanhβ h̄(Ω±ωB)/4.

For mean magnetization
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and for mean magnetic susceptibility we obtain
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where µB =
h̄e
µc

.

3. Results and Discussion. Fig. 1 shows the electron gas mean energy dependencies
on magnetic field strength, when the radius of quantum dot R0 = 2a∗B. It is seen that the
energy is increasing by the increase of magnetic field value. Wherein, the energy growing
faster at low temperatures (T = 100 K, T = 200 K), and for higher temperatures (T = 300 K)
the growth slows down. From the figure it is clear that the dependencies are not linear, which
is related to the presence of QD confinement potential. Note, that at the higher tempera-
tures (T = 300 K) the energy curve is placed upper than at the lower values of temperature
(T = 100 K, T = 200 K).
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Fig. 1. Dependence of the mean energy on the value of magnetic field (R0 = 2a∗B):
1. T = 300 K; 2. T = 200 K; 3. T = 100 K.
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Fig. 2. Dependence of the mean magnetization on the value of magnetic field (R0 = 2a∗B):
1. T = 300 K; 2. T = 200 K; 3. T = 100 K.

In Fig. 2 it has been shown the electron gas mean magnetization dependencies on
magnetic field strength. It follows that the system has the pronounced diamagnetic properties
and this dependencies 〈M (B)〉 are close to the linear. With growth of the temperature, the
average magnetization decreases by absolute value because the amplitude of the fluctuations
of magnetic moments are increasing, namely, the magnetic moments begin chaotic turns
independent from each other, and the total order is becoming weaker. Finally, in the Fig. 3 the
dependencies of the electron gas mean magnetic susceptibility on magnetic field strength B
are presented. Since 〈χ〉 is defined as derivative of 〈M〉 with respect to B, then taking into the
account the almost linear dependency 〈M (B)〉, the 〈χ〉 dependance on the field value is weak.
There is a rise of the magnetic susceptibility on the magnetic field at lower temperatures
(T = 100 K and T = 200 K), which indicates the deviation of 〈M (B)〉 from the linear law
at such temperatures. With increasing the temperature, the dependency 〈χ (B)〉 becoming
weaker.
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Fig. 3. Dependence of the mean magnetic susceptibility on the value of magnetic field (R0 = 2a∗B):
1. T = 300 K; 2. T = 200 K; 3. T = 100 K.
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4. Conclusion. Thus, the dependencies of mean energy, magnetization and magnetic
susceptibility on the strength of the magnetic field at different temperatures for the electron
gas localized in the cylindrical QD with parabolic confinement potential has been obtained.
The dependence of the mean magnetization on the value of magnetic field shows the pro-
nounced diamagnetic properties of the system. At the relatively low temperatures, there is a
slight increase in the magnetic susceptibility on the values of magnetic field, and it practically
does not change at higher temperatures.
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