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ODD SYMMETRIC TENSORS, AND AN ANALOGUE OF THE LEVI-CIVITA
CONNECTION FOR ODD SYMPLECTIC STRUCTURE
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We consider odd Poisson (odd symplectic) structure on supermanifolds induced by
an odd symmetric rank 2 (non-degenerate) contravariant tensor field. We describe the
difference between odd Riemannian and odd symplectic structure in terms of the Cartan
prolongation of the corresponding Lie algebras, and formulate an analogue of the Levi-
Civita theorem for an odd symplectic supermanifold.
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Introduction. The role of an odd symmetric rank 2 contravariant tensor field on a
supermanifold is twofold. On one hand, it may be considered as the principal symbol of an
odd second order differential operator; on the other, the tensor field defines an odd bracket
on functions, an odd Poisson bracket, if the bracket satisfies a Jacobi identity. It is very
illuminating to utilise this versatility to study the properties of odd brackets in terms of odd
second order operators (see [1}12]).

The fact that the study of odd brackets and odd operators may be combined does not
have an analogy in usual mathematics (where by “usual” we mean without anticommuting
variables). In the usual setting, symmetric tensors are related with Riemannian geometry and
second order operators, whereas antisymmetric tensors are related with Poisson and symplec-
tic geometry. In supermathematics the notion of symmetry for tensors becomes more subtle
and the difference between odd Riemannian and odd symplectic structures has to be based on
the fact that a Riemannian structure is “rigid”, whilst a symplectic structure is “soft”, i.e. the
space of infinitesimal isometries (the Killing vector fields) of a Riemannian structure is finite
dimensional, and the space of infinitesimal isometries (the Hamiltonian vector fields) of a
symplectic structure is infinite dimensional. This fundamental difference is a consequence of
the difference in the Cartan prolongation of the corresponding Lie algebras. When anticom-
muting variables are present, it is this characteristic feature that must be used to distinguish
between these two structures. We discuss this phenomenon in the next section.

In the last section we study properties of a second order compensating field which
naturally arises on odd Poisson supermanifolds. In the case when the Poisson structure is non-
degenerate (an odd symplectic structure), this compensating field may be defined uniquely in
a way analogous to the Levi-Civita connection.
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What Distinguishes Riemannian and Symplectic Structure? Recall the following
textbook facts: Riemannian geometry and second order operators are yielded by symmetric
rank 2 contravariant tensor fields, and Poisson and symplectic geometry arise from antisym-
metric tensors. In more detail; a symmetric tensor field G = g™ (x)d; ® 9; (g% (x) = g"(x)) can

be considered as the principal symbol of a second order operator A = 3 g*(x) k0 +- -+, and,

if the tensor is non-degenerate and positive-definite, defines a Riemannian metric g;; (x)dx* ®
dx'. A rank 2 antisymmetric tensor field P = P*(x)d A d; (P* = —P*') defines a bracket on
functions on the manifold M: {f,¢} = —{g,f} = 0;fP*d,g, which is a Poisson bracket if
P obeys the Jacobi identity: P"d,P/* + cyclic permutations = 0. If the Poisson structure is
non-degenerate, the inverse tensor field w (x)dx* A dx’ (wy = (P_l)ik) defines a symplectic
structure on M.

What happens in the case when M is a supermanifold? In the same way one can
consider a symmetric rank 2 contravariant tensor field,

E= EAB( )i i EBA _ (_1)p(l.?)p(A)E/w7

V559537
978~ dz
which may be considered as the principal symbol of a second order operator
1 Jd 4d
A= —E8

2 Gm gt
We choose local coordinates 74 = (x?,0%) on M, where x” are even (bosonic) coordinates,
their parity p is p(x%) = 0, and 8% are odd (fermionic) coordinates with parity p(0%) = 1.

0dd coordinates anticommute: xx” = x’x4, x90% = 0%“, whereas 0%6F = —9Pox.
Respectively for derivatives,
ii :(_1)P(A)P(3)i.i 1)
074 978 078 oA’

where we denote by p(A) the parity of coordinate z4 = (x4, 0%).
We have to distinguish two cases: when the tensor field E = E4Bgp @ 9y is even and

when it is odd. Consider for example a p|g X p|g matrix 0), where A is a p X p matrix

A
0 B
and B is a ¢ X g matrix, both containing even entries. A tensor field defined by this matrix
is an even tensor field on p|g-dimensional superspace RPl. Tt is a symmetric field, if A is
symmetric and B is antisymmetric, and vice versa, the tensor field is antisymmetric, if A is an
antisymmetric matrix and B is a symmetric matrix.

Now let K and L be two n x n matrices with even entries. Then a tensor field defined

by the n|n X n|n matrix is an example of an odd tensor field. This field is symmetric

K
L O
(antisymmetric), if K = L (K = —L). An important case of this is the following: for the n x n
unity matrix /, consider two n|n X n|n matrices:

0 I 0 I
S:(I 0)’ GZ([ 0)' )

Matrix S defines an odd symmetric contravariant tensor field, whilst matrix G defines an odd
antisymmetric contravariant tensor field. Later we will see that S leads to odd symplectic
geometry and G to odd Riemannian geometry.

In the same way as for usual manifolds, an even symmetric tensor field yields
Riemannian structure and an even antisymmetric tensor field obeying the Jacobi identity
yields Poisson structure (see for details [[1]]). This is not the case for odd tensors where
the notion of symmetry becomes more subtle.

Statement. An odd contravariant symmetric tensor field (obeying the Jacobi identity)
defines an odd Poisson structure. An odd contravariant antisymmetric tensor field obeying a
non-degeneracy condition defines an odd Riemannian structure.
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Discuss this statement.

Example 1. Consider the n|n-dimensional superspace R"" with coordinates
(xl,...,x”\eh...,e,,), together with the odd symmetric rank 2 contravariant tensor field
defined by the matrix S in equation (2). The components of S are constants and hence the
Jacobi identity is fulfilled. We come to an odd non-degenerate Poisson bracket (symplectic
structure) defined by the relations

{x,0;} =06 and {xX' ¥} =0={6,6}.
For arbitrary functions,
{f.g} = 9f % (_l)p(f)ﬁ.ﬁ
RARFTT ) 96, oxi’
(The coordinates x', 6 ; are Darboux coordinates for this symplectic structure.)

What is the reason for this paradoxical change in symmetry? In usual mathematics,
given a non-degenerate (anti)symmetric tensor, its inverse tensor is also (anti)symmetric. This
is no longer the case when passing to the super setting, where the symmetry of the inverse
tensor is now dependent on the parity.

Example 2. Consider arank 2 contravariant tensor field IAB with Lyp its inverse:
IABLge = 6? (if it exists). Then one sees that

[AB _ i(_l)P(A)P(B)LBA = Lip= ¢(_])(P(A)+1)(P(B)+1)+P(L)LBA_ 3)
Consider also the map of tensors X +—> X,
XAB s RAB — (—1)PA)xAB %)

If XAB = £(—1)PBPAXBA then XAB = 5 (—1)(PB+D(PA+T)XBA - For example, if L is
an odd non-degenerate symmetric (antisymmetric) tensor, then its inverse is also symmetric
(antisymmetric), but with respect to a shift in parity, and the inverse to the tensor L is an odd
antisymmetric (symmetric) tensor with respect to usual parity.

This symmetry shift can be explained by the parity reversal functor IT: V' — IIV
(which reverses the parity in a vector space V). This functor defines a canonical isomorphism
V®V —IIV®IIV (see Eq. {@)), which induces a canonical isomorphism $?(TTV) = 1> A 2V
between the symmetric square of ITV and the wedge square of V. When L is odd, L defines
an isomorphism between T*M and I17T M, which induces a shift of symmetry (for details see
the appendix of the article [3]].)

Symmetry and antisymmetry cease to be the “wall” between odd symplectic and odd
Riemannian geometry. In order to distinguish between the structures one has to consider
other differences. Recall: Riemannian geometry possesses only a finite dimensional space of
infinitesimal isometries (Killing vector fields), and symplectic geometry possesses an infinite
dimensional space of infinitesimal isometries (Hamiltonian vector fields; each induced from
a Hamiltonian function). Algebraically, this difference is expressed in terms of the difference
in the Cartan prolongation of the orthogonal and symplectic Lie algebras.

Definition 1. Let§ be a subalgebra of the linear Lie algebra g/(n,R). The
k™ Cartan prolongation of G is the space Gy (k =0,1,2,...) of symmetric k + 1-linear maps
[:R" x--- xR" — R" such that for every k vectors vy,..., v, the linear map

R"sv—=I(vvi,...,) €ER"
belongs to the Lie algebra G (see, e.g., [4]). In components, elements of G are tensors

7}","1“4"% of type ( k—lk 1) , which are symmetric over all lower indices and, for all fixed values
of my,...,my, T}ml .m, belongs to the Lie algebra .

The following textbook example illustrates the relation between the Cartan prolonga-
tion of the space of infinitesimal isometries and the rigidity of the structures.
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Example 3. Let R? have Cartesian coordinates (x) and consider the 2n x 2n
0 I,
-1, O
defines the standard Euclidean metric G = Zizﬁ](dxi)z, whilst the matrix J defines a
symplectic structure (in Darboux coordinates) w = Y%, dx' Ndx.
Let K = K?(x)d; be a Killing vector field preserving the metric G (an infinitesimal
isometry):

unity matrix I = b, and the antisymmetric matrix J = ( ) The unity matrix

0K (x) IK/(x)

ox/ ox
where £ is the Lie derivative. Similarly, let L be a vector field preserving the symplectic
structure @:

LkG=0, ie. =0, &)

) aL™(x) dL™ (x)
Lro=0, ie. E; Jini +ij I =0. (6)
If we differentiate Eq. (§) by any coordinate x*, we come to
. j . aZKi
1 ]
T}C]‘FT}“ = O, Where Tk] = m (7)

The tensor Tki ; is symmetric with respect to the lower indices k and j, and antisymmetric in
indices j and i by (/). Hence this tensor vanishes:

Ti=-T,=-T]| =Tk =Tk =T} = -T},. ®)

Since Tk’ =0, we see that K’ = ¢/ +B’]xf and so all infinitesimal isometries of the Euclidean
metric are translations and infinitesimal rotations. Now notice that Eq. (7) reads that the
tensor Tli belongs to s01(n), the first Cartan prolongation of the special orthogonal algebra
s0(n), and Eq. (8] reads that the first Cartan prolongation of the algebra so(n) vanishes. This
algebraic fact explains the rigidity of Riemannian geometry.
In the symplectic case, Eq. (6) can be rewritten as
dL; JL;
dxi  oxi’
We see that this equation, contrary to Eq. (7)), has an infinite dimensional space of solu-
tions. Every Hamiltonian function ® defines L; = d;®(x), which is a solution of Eq. (9)
(respectively every Hamiltonian vector field L'd; = J%/ d;®0; is a solution of Eq. (6)). In other
words, all Cartan prolongations sp; (1) of the symplectic Lie algebra sp(n) are non-trivial.

An arbitrary rank k + 2 symmetric tensor Ly, ..., j- defines a tensor Lﬁnl mgj = Loy jr J'

where L;=1L"J,;, since Jj=—Ju. 9)

belonging to the k™ prolongation of the symplectic algebra.

Because of the subtleties with the symmetry of odd tensors, this example suggests that
the distinguishing feature between odd Riemannian and odd symplectic structure should be
the rigidity of the structures described in terms of the Cartan prolongation of the
corresponding Lie algebras.

Example 4. Consider the superspace Rl together with the odd symmetric tensor
field E g gymp. defined by the symmetric matrix S in Eq. (Z), and the odd antisymmetric tensor
field E, g4 riem. defined by the antisymmetric matrix G in the same Eq. (2).

One can show in a similar way to Example [3|that the space of vector fields preserving
the symplectic structure E,g4ymp. is infinite dimensional, and the space of vector fields pre-
serving the Riemannian structure is finite dimensional. Indeed, the first Cartan prolongation
of the Lie algebra of vector fields preserving E, g yiern. vanishes. Namely, if we denote by K’
a vector field which preserves the tensor field E, gy ier. (compare with Eq. (3)), then we come
82 K/A
0z¢Z8"

to the equation T4y = —T/B(—1)PBPA) - for T4 =
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Compare it with Eq. (7). This equation reads that the tensor Té’é belongs to the
first Cartan prolongation of the Lie algebra of vector fields preserving the odd tensor field
Eoddriem.» and it vanishes identically in the same way as its counterpart in Eq. (8).

For the odd symplectic structure E g gymp. the conclusions are analogous to those for
the symplectic structure in Example[3| Every rank k42 symmetric tensor defines an element
in the k™ Cartan prolongation of the Lie algebra of vector fields preserving E,44 symp. (the odd
symplectic structure). Equivalently, every Hamiltonian function ®(x) defines a Hamiltonian
vector field preserving the odd symplectic structure.

Remark 1. We would like to note article [5], in which vector fields which
simultaneously preserve both even and odd non-degenerate Poisson brackets were studied.
It was shown in this paper that the space of these vector fields is finite dimensional. This
fact was deduced from considerations, which implicitly involved the calculation of Cartan
prolongations (the vanishing of the first Cartan prolongation of the Lie algebra of vector
fields preserving both even and odd brackets).

Odd Second Order Operators and Odd Poisson Structure. Return now to an odd
symmetric tensor field E = E48(7)dp ® d4 defined on a supermanifold M. To begin, we
will briefly recall some of the results from [6]. Denote by Fg the class of odd second order
self-adjoint differential operators with the principal symbol E acting on half-densities on this
supermanifold M

. _ L BA
FeeA: A= 5 (E*®(2)0pda + IgE"(2)0a + U (2)) , (10)
where U (z) is an odd function on M, p(U)=1. If s = s(z)v/Dz is a half-density, then

As = % (98 (E%u5(2)) + U(2)s(2)) VD.

Any two operators in Jg differ by an odd scalar function (see for detail [0]).
The term U = U(z) is called the potential field, and transforms under a change of local
coordinates in the following way:

1 ror 1 %
U'=U+ 50w (EAB o 10gJ> +7 (@v logJE*B O IOgJ) ; an

where J is the Berezinian (superdeterminant) of the Jacobian of the coordinate change. The
potential field acts as a second order compensation field (a second order connection) on the
manifold M; as a first order connection compensates the action of diffeomorphisms on the
first derivatives, the potential field compensates the action on the second derivatives.

We now consider the operator A”. Since A is an odd self-adjoint operator of
order 2, A? is an even anti-self-adjoint operator of order equal to either 3, 1 or else A = 0.
The condition that E defines a Poisson structure and the relations between this structure and
the class g of operators can be summarised in the following statement.

Proposition 1]6]. Let Abe an arbitrary operator in the class Jg. Then the odd
symmetric tensor field E defines an odd Poisson structure on the manifold M, i.e. it obeys the
Jacobi identity, if and only if the order of the operator A? is equal to 1 or else A% = 0. In this
case the operator A? defines a vector field X = X, such that

A’ =Ly, (12)
where Lx is the Lie derivative along the vector field X. The vector field X = X, is called the
modular vector field of the operator A, and preserves the Poisson structure. If A’
is another arbitrary operator from the class Fg, that is, A’ = A+ F, then Xy = Xa + D,
where Dp is the even Hamiltonian vector field corresponding to the odd function F. The cor-
responding equivalence class of the modular vector field (in Lichnerowicz—Poisson
cohomology) is called the modular class of the odd Poisson manifold.



30 Proc. of the Yerevan State Univ., Phys. and Math. Sci., 2016, Ne3, p. 25

If E defines an odd Poisson structure on M, then the modular vector field X = X, of
operator (I0) has the following local appearance:

X = 33 (EPapagk™) 3y + (~1)P W EV 9,0, (13)

Assume now that the tensor field E defines an odd non-degenerate Poisson structure
(an odd symplectic structure) on the supermanifold M. In Darboux coordinates (x', 6;) (see
Example|[T), one may naively define the canonical operator A on half-densities by
9%s(x,0)
As = %96, D(x,0). 14)
What is remarkable is that this local expression defines an operator globally on M [[7]; in
arbitrary Darboux coordinates it has the same appearance. In other words, the vanishing
of the potential U in one set of Darboux coordinates implies that it vanishes in arbitrary
Darboux coordinates. We see that if E defines a non-degenerate odd Poisson structure, then
the class Fg possesses a distinguished operator, the odd canonical operator (I4) defined by
the condition

U =0 in Darboux coordinates. (15)

The expression for the potential of the odd canonical operator was calculated in arbitrary
coordinates in [8]. It has the appearance

1 1
U() = 3 0p0aB"" (2) = (- 1) WO S B ()Ecn () pE™ (2), (16)

where E,p is the inverse tensor to EAB.

Proposition 2. For an odd symplectic supermanifold there exists a unique
potential field U defining the odd canonical operator (I4). This potential field vanishes in
arbitrary Darboux coordinates. In arbitrary local coordinates it is given by expression (16).
The potential U acts as a second order compensating field and transforms under a change of
coordinates according to (TT).

This proposition can be considered as a far analogue to the Riemannian case of the
unique first order compensating field, i.e. the Levi-Civita connection.

Notice that the modular vector field of the odd canonical operator vanishes. (In
particular, this means that the modular class of an odd symplectic manifold vanishes.) The
vanishing of the modular vector field of the canonical operator means that the potential U in
(T6) is a solution of the first order differential equations

%ac (EPIpagEBY) + (—1)PWEABgpU =0,

which follow from Eq. (I3). The solution of these equations is unique up to an odd con-
stant. Condition implies that this odd constant vanishes for the canonical operator (I4)
(see also [9]]).

Remark 2. We would like to note that we currently have no conceptually clear
way of deriving formula (T6). On the other hand, the vector field has some mysterious
properties, which may be part of a calculus for odd Poisson manifolds and in particular for
odd symplectic geometry. We think that understanding these properties will elucidate the
geometrical structure of expression (I6)). This is a work in progress.

We are grateful to Th. Voronov for encouraging discussions.
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