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ELECTROMAGNETIC CASIMIR DENSITIES FOR A PLATE
IN ANTI-DE SITTER SPACETIME
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We investigate the vacuum expectation values (VEV) of the electric field squared
and of the energy-momentum tensor for the electromagnetic field in anti-de Sitter (AdS)
spacetime induced by a plate parallel to the AdS boundary. On the plate the field obeys
the boundary condition that generalizes the perfect conductor boundary condition for an
arbitrary number of spatial dimensions. We show that the plate-induced contributions in
the VEV of the electric field squared and the vacuum energy density are negative, whereas
the normal stress is positive. The VEV vanish on the AdS boundary.
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1. Introduction. Much of early interest to anti-de Sitter (AdS) spacetime was moti-
vated by the questions of principle nature related to the quantization of fields propagating on
curved backgrounds. The appearance of AdS/CFT correspondence and braneworld models
of Randall-Sundrum type has revived interest in this subject considerably. AdS/CFT cor-
respondence [1] relates string theories or supergravity in AdS bulk with a conformal field
theory living on its boundary. It has many interesting consequences and provides a powerful
tool for the investigation of gauge field theories. The braneworld scenario [2]] offers a new
perspective on the hierarchy problem between the gravitational and electroweak mass scales.
The main idea to resolve the large hierarchy is that the small coupling of four-dimensional
gravity is generated by the large physical volume of extra dimensions. Braneworlds naturally
appear in string/M-theory context and present intriguing possibilities to solve or to address
from a different point of view various problems in particle physics and cosmology.

An inherent feature of all these models is that the boundary conditions on the fields
should be specified in order to completely determine the dynamics. The boundary conditions,
imposed on the field operator, modify the spectrum of the vacuum fluctuations of a quantum
field. As a consequence, the vacuum expectation values (VEV) of physical observables are
shifted. This general phenomena is known as the Casimir effect (for a review see [3]). In
braneworlds, the boundary conditions imposed on the bulk fields will give Casimir-type con-
tributions to vacuum energy and to vacuum forces acting on the branes. The latter provide a
natural mechanism for stabilizing the interbrane distance in Randall-Sundrum-type models.

In the present paper we consider the influence of the plate parallel to AdS boundary
on the properties of the electromagnetic field. On the plate the boundary condition is imposed
that is a generalization of the perfect conductor boundary condition in 4-dimensional space-
time. The two-point function for electromagnetic field in the boundary-free AdS spacetime
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is investigated in [4]. The electromagnetic Casimir densities in de Sitter spacetime for flat
boundaries have been considered in [5}|6]. The electromagnetic two-point functions and the
Casimir effect in background of more general Friedmann—Robertson—Walker cosmologies
are discussed in [7]].

Outline of the paper is as follows. In next Section we describe the geometry of the
problem and present the mode functions. The VEV of the electric field squared and of the
energy-momentum tensor in the region between the plate and AdS boundary are investigated
in Sections 3 and 4 respectively.

2. Background Geometry and the Modes. We consider the quantum electromag-
netic field in background of (D + 1)-dimensional AdS spacetime. The latter will be described
in the Poincaré coordinates with the line element

ds* = gidx'dx* = efzy/an#vdx“dxv —dy?, ¢))
where Latin and Greek indices run over the values 0,1,....D and 0, 1,...,D — 1 respectively,
Nuv = diag(1,—1,..... —1) and « is the curvature radius. For the corresponding curvature

scalar one has R= —D(D+1)/a>.

In addition to the coordinate y, we will use the coordinate z = ae’/ X 0<z< 00,
in terms of which the line element takes a conformally-flat form ds®> = (ot/z)>nydx'dx* with
xP = z. Hypersurfaces z = 0 and z = o correspond to AdS boundary and horizon respectively.

We assume the presence of a boundary located at z = z, on which the electromagnetic
field obeys the boundary condition

nv! “Fy vy, =0, 2)

where n*! is the normal vector to the boundary, *Fy,...v, , is the dual of the field tensor
Fuy = duAy — dvAy, and A, is the vector potential. This condition generalizes the perfectly
conducting boundary condition in standard D = 3 electrodynamics.

We are interested in the VEV of the electric field squared and of the energy-momentum
tensor for electromagnetic field in the region 0 < z < z¢. For evaluation of the VEV a complete
set of electromagnetic modes, obeying condition (2), is required. This set can be found in a
way similar to that was used in [_8] for the region zg < z < . In the gauge Ap =0, VA =0
the corresponding eigenfunctions, regular on AdS boundary, have the form

Aak = CE(G)IZD/%IJD/z—l (Ag)elxior, (3)

where Jy(x) is the Bessel function, x = (x! x* ... xP71), k = (k',k%,... kP~1),
® = VA2+k?. The index 6 = 1,...,D — 1 corresponds to different polarizations. The
polarization vectors are normalized by relation N*V€(51),€(5)y = —050/- From the gauge
conditions we have £)p = 0 and k" &), = 0. Combining these relations, one can see that

D—1
Z 8(0).‘18(0)\/ = _n/.LV +k'ukv/z,2 (4)
o=1

From the boundary condition (2] at z = z it follows that the eigenvalues of A are the
roots of the equation
Jpja-1(Az0) = 0. ®)

We denote the zeros of the function Jp 51 (x) by j, withn=1,2,..., 0 < j, < jut1. Then,
for the eigenvalues of the A, we get A = j,,/z9. The coefficient C in is found from the
normalization condition and is given by

, 202n)* PaP

C'=——7 6)

Z(2)("”/02/2—1(1.") '

Note that one has Ji)/%l (Jjn) = —Ipj2(jn)-
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3. VEV of the Electric Field Squared. In this section we investigate the VEV of the
electric field squared (0|E2|0) = (E?), where |0) stands for the vacuum state. This VEV is
evaluated by using the mode-sum formula

D-1 w
=g"%" Y /dkz Floax)oi () F a0 (%), (7
o=1 n=1

where F(G;Lk)il(x) is the field tensor corresponding to the vector potential H and the star
means the complex conjugate. The expression in the right hand side of (7)) diverges. In order
to have a finite expression, we assume that some cutoff function is introduced without writing
it explicitly. The special form of that function will not be important for the further discussion.

The expression contains the summation over the zeros of the Bessel function
Jp/2—1(x). These zeros are given implicitly and this expression is not convenient for the
numerical evaluation. For a function f(u) analytic in the right half plane Reu > 0, we use the
generalized Abel-Plana formula [9]]

i f (jn)
a1 Jnd| D/2 1(]n )
/ du f(u) + —/ du 22 ‘ [ L2 (i) + 7P (i)
: Ipjp—i(
where I, (x) and K (x) are the modified Bessel functlons. It can be shown that the contribution
of the first integral in (8 to (E?) corresponds to the VEV of the electric field squared in the
geometry without the plate z = zg. The latter will be denoted by (E?)¢. As a consequence,
we get the following decomposition

(E%) = (E%)g+(E?),, ©)
where <E 2> » 18 induced by the plate. For points outside of the plate, all the divergences are
contained in the boundary-free part only and renormalization is reduced to the renormaliza-
tion of the latter. From the maximal symmetry of AdS bulk we expect that renormalized VEV

(E?), does not depend on the spacetime point.
For the boundary-induced contribution we find the following expression

B (D—1) (z/0)"*?
(B == 4m)P27'r(D/2+1) aD+l/ A=

Kpjp-1(x) 1, (10)
Tty [be-atez/0) + 28/
This part is always negative. For the special case D = 3 the VEV reduces to
Tx* = xcosh(xz/zo)
g2, = LT [ g Do) .
< >b 4ot 15 0 * e —1 (11)

The Minkowskian limit corresponds to & — oo for a fixed value of the coordinate y. By
taking into account the relation between the coordinates y and x, we ﬁnd z~ a+y and
z/z20 = 14 (y—yo) /. The dominant contribution to the integral in (10) comes from large
values of the integration variable. By using the asymptotic expresswns for the modified

Bessel functions for large arguments, we find (E?);, — (E 2>§7M)

3(D-1)I'((b+1)/2
= SO DTUD /) )
2(4n) (o —)
is the VEV induced by a plate in Minkowski spacetime located at y = yy.
The VEV (10) diverges on the plate z = zo. For points near the plate, assuming that

1 —z/z0 < 1, the leading term in the asymptotic expansion over the distance from the plate is

, where
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given by . On AdS boundary, corresponding to z = 0, the boundary-induced VEV (E?),
vanishes. The leading term is given by the expression

_2672D lfD/Z( Z/Z() 2D 2/ Jex p 3KD/2 ](x)

(E?))p =~ (D/2+1)F2(D/2—1 ab+1 Ipj—1(x)

13)

—2ma”
G s

4. VEV of the Energy-Momentum Tensor. For the evaluation of the VEV of the
energy-momentum tensor we employ the mode-sum formula

for D > 4 and by <E2>b ~

1 D 1 1 -
= /dkz { (oK)t () Fg 700 () — 461'kF(6)Lk)lm(x)F(lclk)(x) . (14

Similar to the case of the field squared, by applying to the series over n the summation formula
(8). the VEV is written in the decomposed form

(1) = (T} + (T})s. (15)

For points outside the plate the renormalization is required for the boundary-free part only.
Because of the maximal symmetry of the background geometry, the latter is proportional to
the metric tensor: <Tik >0 = const - §¢. The boundary-induced contribution in the VEV of the
vacuum energy-momentum tensor is diagonal. For the corresponding components we obtain
(no summation over /)

(1), = — (D—1)(z/20)"+* /OmdxxDHKD/zl(x)

Gy (x2/20),  (16)

(4m)P2T(D/2+ 1)aP+! Ipj-1(x)
where
GV () = v () + (v = 1) 2(w), [=0,1,...,D—1; G (u) = (v+ 1) [I2(u) — 2, (w)] -

It can be checked that this VEV obeys the covariant conservation equation Vy <Tk> =0.
In the geometry under consideration this is reduced to a single equation

P10 (P(TE)s) + D(TY)p = 0. (17

The plate-induced contribution to the energy density is negative, <T00>b < 0, whereas the
normal stress is positive, (75’), > 0, i.e. the corresponding vacuum pressure is negative. The
vacuum stresses parallel to the plate are equal to the energy density. The latter property is a
direct consequence of the Lorentz invariance along the directions parallel to the plates.

In the special case D = 3 one gets

2 4
n*(z/z20) I 1 b
TRy, = =20 (1], = — (T, 18
To)s =400 T =—3{Db)s (18)
for! =0,1,...,D— 1. In this special case, the electromagnetic field is conformally invariant

and the boundary-induced contribution is expressed in terms of the corresponding VEV in the
region between two conducting plates in Minkowski bulk by the standard conformal relation.

For points near the plate and for D > 4, the dominant contribution to (I6) comes from
large values of x and to the leading order we find

. _(D=3)(D-1)I((D+1)/2) Y=y
(1)~ — 2(41) PP (3 — )PP TRy ~ a°<T0°>,, (19)

for/=0,1,...,D— 1. The leading term in the components with / = 0,1,...,D — 1 coincides
with the corresponding result for a plate in the Minkowski bulk. Near AdS boundary, z — 0,
the boundary-induced VEV vanish with the leading terms
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< D> ~ 24-2b (D — 1) (Z/ZO)ZDiz ‘/oo dxx2D73 KD/Z*I (X) (20)
0

DI DAL (D/2)I2(D/2 — 1)aP ] Ipj (%)
and (7)), ~ (2/D—1)(TF), for [=0,1,....D—1.

5. Conclusion. We have discussed the effects of a boundary in AdS spacetime on the
properties of the electromagnetic vacuum in an arbitrary number of spatial dimensions. The
boundary is parallel to AdS boundary and on it the electromagnetic field obeys the condition
(2) that corresponds to the standard perfect conductor boundary condition for D = 3. The
plate-induced contribution to the VEV of the electric field squared in the region 0 < z < zg
is given by (I0). It is negative everywhere, vanishes on AdS boundary and diverges on the
plate. For the plate-induced part in the vacuum energy-momentum tensor we have derived the
expression (I6). The corresponding energy density and stresses along the directions parallel
to the plate are negative, whereas the normal stress is positive.
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