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HYPERNUCLEAR MATTER IN COMPACT STARS
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We discuss the recently developed energy density functional for hypernuclear
matter, which is based on simultaneous calculation of heavy single-Λ hypernuclei and
compact stars containing hypernuclear core. The nucleonic matter is described in terms of
a density-dependent parametrization of nucleon-meson couplings, whereas the hyperon-
meson couplings are deduced from the octet model. We identify the parameter space of
hyperon-meson couplings for which massive stellar configurations with M ≤ 2.1M� exist
and at the same time the laboratory Λ-hypernuclear data can be described.
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Introduction. The recent observations of two-solar-mass pulsars in binary orbits with
white dwarfs [1, 2] spurred an intensive discussion of the phase structure of dense matter,
which is consistent with the implied observational lower bound on the maximum mass of
any sequence of compact stars based on the unique equation of state (EoS) of dense matter.
Hyperons become energetically favorable once the Fermi energy of neutrons exceeds their
rest mass. The onset of hyperons reduces the degeneracy pressure of a cold thermodynamic
ensemble, therefore, EoS becomes softer than in absence of the hyperons (for example, [3,4]).
As a result the maximum possible mass of a compact star decreases to values which contradict
the observations. This contradiction is known as “hyperonization puzzle”.

The current and upcoming experimental studies of the properties of Λ-hypernuclei
in laboratories such as HKS experiment at JLab in the US, J-PARC experiments in Japan
etc., will greatly advance our understanding of the strange sector of the nuclear forces and
properties of hypernuclei.

The experimental observations of bound Λ-hypernuclei imply that the interaction must
be attractive enough to bind a Λ particle to a medium and heavy mass nucleus. At the same
time the existence of two-solar-mass pulsars requires sufficient repulsion (at least at high
densities) to guarantee the stability of hypernuclear compact stars, if such exist. Therefore,
the combined laboratory and astronomical data limit from above and below the attraction
among hyperons in nuclear medium in any particular model.

In this contribution we review how these bounds can be used to constrain the
relativistic density functional theory (DFT) of hypernuclear matter, as discussed originally in
[5, 6], where an extension of nuclear density functional with a density-dependent
parameterization of the couplings, was extended to the hypernuclear sector within the SU(3)
symmetric model. The initial focus was on the sensitivity of EoS of hypernuclear matter to
the unknown hyperonscalar-meson couplings [5]. Later this model was tested by carrying
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out calculations of a number of hypernuclei and by providing a combined constraint on the
parameters of the underlying DFT by invoking both the astronomical and laboratory data on
hypernuclear systems [6]. The coupling of σ -meson to the Λ-hyperon were optimized to fit
the data on hypernuclei, thus narrowing down the parameter space. The parameter space of
the remaining σ −Σ coupling was then constrained using some general inequalities as well
as astronomical observations of the 2M� pulsars.

Theoretical Model and Choice of Couplings. The density functional for hypernu-
clear matter is based on the Lagrangian. Relativistic Lagrangian density of our model reads
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where the B-sum is over the JP = (1/2)+ baryon octet, ψB are the baryonic Dirac fields
with masses mB. The meson fields σ ,ωµ and ρµ mediate the interaction among baryon
fields, ωµν and ρµν represent the field strength tensors of vector mesons and mσ , mω ,
and mρ are their masses. The baryon-meson coupling constants are denoted by gmB. The
last term of Eq. (1) stands for the contribution of the free leptons, where the λ -sum runs
over the leptons e−,µ−,νe and νµ with masses mλ . The density dependence of the cou-
plings implicitly takes into account many-body correlations among nucleons which are be-
yond the mean-field approximation. The nucleon-meson coupling constants are parametrized
as giN(ρB) = giN(ρ0)hi(x) for i = σ ,ω , and gρN(ρB) = gρN(ρ0)exp[−aρ(x− 1)] for the
ρµ -meson, where ρB is the baryon density, ρ0 is the saturation density, x = ρB/ρ0 and the
explicit form of the functions hi(x) and the values of couplings can be found elsewhere
[5]. This density functional is consistent with the following parameters of nuclear systems:
saturation density ρ0 = 0.152 f m−3, binding energy per nucleon E/A = −16.14, incom-
pressibility K0 = 250.90, symmetry energy J = 32.30, symmetry energy slope L = 51.24,
symmetry incompressibility Ksym = −87.19 MeV all taken at saturation density. Obtained
values of parameters are in an excellent agreement with the nuclear phenomenology.

The hyperon–meson couplings are fixed according to the SU(3)-flavor symmetric octet
model. Due to the universal coupling of the ρµ meson to the isospin current and the ideal
mixing between the ω and φ mesons, the couplings between hyperons and vector mesons are
as follows

xρΞ = 1, xρΣ = 2, xωΞ = 1/3, xωΣ = xωΛ = 2/3, xρΛ = 0, (2)

where we defined the ratios xρΞ = gρΞ/gρN , xρΣ = gρΣ/gρN , etc.
Within the octet model the baryon–scalar-mesons couplings of the scalar octet can be

expressed in terms of only two parameters, the nucleon–a0 meson coupling constant gS and
the F/(F +D) ratio of the scalar octet. Allowing for mixing of the scalar singlet state, the
couplings of the baryons with the σ -meson obey the following relation [5] 2(gσN +gσΞ) =
= 3gσΛ+gσΣ. We assume that the hyperon coupling constants must be positive and less than
the nucleon coupling constants. Solving this equation for one of the dependent hyperon–
σ -meson coupling constant, say gσΞ, one finds

1≤ 1
2
(3xσΛ + xσΣ)≤ 2. (3)

These inequalities define a bound on the area spanned by the coupling constants xσΛ and xσΣ,
which we will constrain further in the following.



44 Proc. of the Yerevan State Univ., Phys. and Math. Sci., 2016, №3, p. 42–46.

Properties of Λ-hypernuclei 17
Λ

O, 41
Λ

C, and 49
Λ

C for the models a, b, and c. The columns list the
single-particle energy of the Λ 1s1/2 state, the binding energy and the rms radii for

neutrons, protons and Λ-hyperon.

Λ 1s1/2 state, E/A, rp, rn, rΛ,

MeV MeV f m f m f m
17
Λ

O
a 0.846 −7.443 2.609 2.579 8.313
b −4.564 −7.760 2.606 2.576 3.203
c −27.279 −9.035 2.563 2.534 1.977

41
Λ

C
a 0.934 −8.336 3.372 3.319 8.710
b −8.519 −8.565 3.370 3.317 3.168
c −35.224 −9.199 3.347 3.294 2.298

49
Λ

C
a 0.973 −8.442 3.389 3.576 8.825
b −9.882 −8.662 3.387 3.571 3.140
c −37.257 −9.207 3.365 3.548 2.419

The same density functional, which is derived from the Lagrangian (1) can be applied
to finite Λ-nuclei. The results of these calculations are presented in Table, where we list
the single-particle energy of the Λ 1s1/2 state, the binding energy of the nucleus and the
rms radii rB for neutrons, protons and the Λ-hyperon. Table shows clearly that the single-
particle energy of the Λ 1s1/2 state is very sensitive to the value of the Λ-σ coupling. The
experimental data on properties of a number of Λ-hypernuclei such as the single-particle
energy of the Λ 1s1/2 state, has been used to construct a mass formula, which extends the
familiar Bethe–Weizsäcker mass formula to include in addition to the non-strange nuclei
the Λ-hypernuclei. A comparison with the predictions of this mass formula shows that the
Λ 1s1/2 states in the model b are too weakly bound, whereas those in the model c are too
strongly bound. Therefore, we proceed further to fine-tune the xσΛ coupling in order to fit
the values of the single-particle energies, i.e. separation energies of the Λ particle, obtained
from the mass formula. The optimal model obtained in this way has xσΛ = 0.6164. Within
this optimal model we have recomputed the properties of 17

Λ
O, 41

Λ
Ca and 49

Λ
Ca, which agree

well with other models (see [6]).
From the study of the dependence of EoS on the variation of the Σ-σ coupling at

T = 0 at fixed value of Λ-σ we find that the stiffest EoS is obtained for the smallest value of
xσΣ = 0.15. EoS band generated by the values of 0.15≤ xσΣ ≤ 0.65 is bounded from below
by EoS which, as we shall see, is incompatible with the lower bound on the maximum mass
of a compact star. Therefore, the parameter space can be narrowed down further by exploring
the masses of corresponding stellar configurations.

Fig. 1 shows the gravitational masses (in solar units) vs radii for our sequences of
stars. First, we see that large enough masses can be obtained within the parameter range
covered. However, for large enough xσΣ the maximum masses of the sequences drop below
the observational value 2M�, specifically for xσΛ = 0.6164 this occurs for xσΣ ≥ 0.45. The
predicted radii of massive hypernuclear stars are in the range of 13 km and are typically larger
than the radii of their purely nucleonic counterparts.

Fig. 2 shows the parameter space covered by the coupling constants xσΣ and xσΛ. The
shaded (blue online) area is the parameter space consistent with Eq. (3). The dot corresponds
to the values of these parameters predicted by the Nijmegen Soft-Core (NSC) potential.
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Fig. 1. The mass-radius relations for compact hypernuclear stars at zero temperature. We fix
xσΛ = 0.6164 and assign values to xσΣ from the range 0.15≤ xσΣ ≤ 0.65 as indicated in the plot. The

horizontal line shows the observational lower limit on the maximum mass 2.01(±0.04)M�.

Fig. 2. The parameter space spanned by xσΛ and xσΣ, where the inset enlarges the physically relevant
area. The shaded (blue online) area corresponds to the inequality (3). The dot corresponds to the
values xσΛ = 0.58 and xσΣ = 0.448 derived from the NSC potential. The dashed (red online) line
shows the best fit value of xσΛ = 0.6164 derived from hypernuclei. The square in the inset shows
the limiting value of xσΣ = 0.45 for fixed xσΛ = 0.6164 beyond, which no stars with 2M� exist.

The dashed (red online) line, which is the optimal value of xσΛ implied by the
hypernuclear data. The solid vertical and horizontal lines show the parameter space explored
in [5]. Finally, the square in the inset shows the maximal value of xσΣ ' 0.45 (at fixed xσΛ),
which is still consistent with the 2M� maximum value of a configuration. Thus, we conclude
that the optimal values of the parameters correspond to

xσΛ = 0.6164, 0.15≤ xσΣ ≤ 0.45. (4)
The first value is set by the study of (heavy) hypernuclei, the upper limit of the second value is
set by the 2M� constraint, whereas the lower limit is set by the requirement of the consistency
with inequality (3).
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Conclusion. Because the information on the properties of hypernuclear matter is
far less extensive than for nucleons, it is currently impossible to exclude hyperons as con-
stituents of densest regions of compact stars. Our study [5] confirms this within a specific
relativistic density functional approach to hypernuclear matter with tuned hyperon–scalar-
meson couplings. We find that hyperonization in massive stars is favored for small ratios of
the hypernuclear-to-nuclear couplings; in particular, hyperons need to be coupled to scalar
mesons weaker than predicted by the SU(6) quark model. For certain values of the hyperon–
scalar meson couplings hypernuclear EoS can still produce stellar equilibrium configurations
of compact stars compatible with the two-solar-mass pulsar observations.

Simultaneous fits to the medium-heavy Λ-hypernuclei and the requirement that the
maximum mass of a hyperonic compact star is at least two-solar masses puts additional con-
straint on the Λ hyperon coupling. This allowed us to narrow down significantly the parameter
space of couplings of DFT, the range of optimal values of parameters is given in Eq. (4).

While our work was carried out within a specific parameterization of the hypernuclear
density functional, it provides a proof-of-principle of the method for constraining any
theoretical framework that describes hypernuclear systems using current laboratory and
astrophysical data.
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