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In this paper we characterize all semigroups in which the hyperidentity of
transitivity X(X(x,y),X(y,z)) = X(x,z) is polynomially satisfied. In particular,
we show that every transitive semigroup (that is a semigroup with the identity
xy2z = xz) is also hypertransitive.
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Introduction. A hyperidentity is a second order formula of the form:

∀X1, . . . ,Xm∀x1, . . . ,xn (ω1 = ω2), (∗)
where ω1, ω2 are words(terms) in the alphabet of functional variables X1, . . . ,Xm

and objective variables x1, . . . ,xn (see [1–4]). However, hyperidentities are usually
presented without universal quantifiers, i.e. as the equality: ω1 = ω2. The hyperiden-
tity ω1 = ω2 is said to be satisfied in the algebra (Q,Σ), if the equality is true when
any functional variable Xi is replaced by any operation of the same arity from Σ (the
possibility of such replacements is assumed) and any objective variable x j is replaced
by any element of Q (see also [5, 6]).

The variety V satisfies a given hyperidentity, if every algebra of the variety V
satisfies the same hyperidentity. Then, the hyperidentity is called hyperidentity of the
variety V .

The hyperidentity (∗) is said to be non-trivial if m > 1, and trivial if m = 1.
The number m is called the functional rank of the hyperidentity (∗).

Let Q(·) be a semigroup. The following function is said to be its binary
polynomial (term):

F(x,y) = zε1
1 zε2

2 . . .zεn
n , (1)

where n ∈ N, ε1,ε2, . . . ,εn ∈ N, z1,z2, . . . ,zn ∈ {x,y} and zi 6= zi+1. The number
n is called the length of this representation of the polynomial F(x,y). However,
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due to the identities in the semigroup Q(·), the same polynomial F(x,y) can have
different representations of the form (1). If xδ1 ,xδ2 , . . . ,xδm are all the occurrences
of the variable x in the given representation of the polynomial F(x,y), then the sum:

δ1 +δ2 + · · ·+δm =
m
∑

k=1
δk is called degree of x in F(x,y) and is denoted by degx(F).

Analogously, one defines the notion of a degree of the variable y in the representation
of F(x,y) and denotes it by degy(F).

Let denote Q2
pol the collection of all binary polynomials of the semigroup Q(·).

We say that the hyperidentity (∗) is polynomially satisfied in the semigroup
Q(·), if this hyperidentity is satisfied in the binary algebra

(
Q,Q2

pol

)
. The semigroup

is called hyperassociative, if the following associative trivial hyperidentity

X(x,X(y,z)) = X(X(x,y),z) (∗ ∗)

is polynomially satisfied in this semigroup.
In [7] it is proved that the class of all hyperassociative semigroups forms a

finitely based variety, and a basis containing about 1000 identities. In [8] (see also
[9]) a basis of the identities of the same variety is given, which contains 5 identities
(see also [10–14]).

The semigroup is called hypertransitive, if the following (∗ ∗ ∗) transitive
trivial hyperidentity is polynomially satisfied in this semigroup (on the classification
of non-trivial transitive hyperidentities see [1–4]):

X(X(x,y),X(y,z)) = X(x,z). (∗ ∗ ∗)

D e f i n i t i o n 1. A semigroup Q(·) is called transitive, if it satisfies the
following identity: xy2z = xz.

In the main result of the present paper we prove that every transitive semigroup
is hypertransitive.

Auxiliary Results. Here we prove certain lemmas used in the proof of the
main result of the paper.

L e m m a 1 . Assume Q(·) is a transitive semigroup. Then the following
identities are satisfied in Q: xy3 = x3y = xy, x2yx = xyx2.

P r o o f . The first identity is easily seen by just taking z = y or x = y in the
transitive identity. For the second one, first plug in y = xz and get x(xzxz)z = xz =⇒
x2zxz2 = xz. Then take z = yx2 in the last identity and get x2(yx2)x(yx2)(yx2) = xyx2.
Since the left hand side is equal to x2(yx3)(yx2y)x2 = x2(yx)(y2)x2 = x2y(xy2x2) =
= x2yx3 = x2yx, we conclude that x2yx = xyx2. �

L e m m a 2 . For any polynomial X(x,y) of the transitive semigroup Q(·) one
of the following Cases holds:
1. X(x,y) = xn for some n ∈ {1,2,3}, 2. X(x,y) = ym for some m ∈ {1,2,3},
3. X(x,y)= xnym for some m,n∈{1,2}, 4. X(x,y)= ymxn for some m,n∈{1,2},
5. X(x,y) = xyxn for some n ∈ {1,2}, 6. X(x,y) = yxym for some m ∈ {1,2}.
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P r o o f . Fix a representation for the polynomial X(x,y) having the smallest
possible length. Note that the transitive identity implies x4 = x2. Thus, if the length
of the fixed presentation of X(x,y) is 1, we end up with either Case 1 or Case 2.

Since we also have that x3y = xy and xy3 = xy from the preceding lemma, any
polynomial having a representation with length bigger than 1, has an equivalent pre-
sentation of the same length with exponents 1 and 2 only. Therefore, if representation
of polynomial X(x,y) has length 2, then it is equivalent to either Case 3 or 4.

Here, we assume that the fixed representation is of the length at least 3 with
exponents 1 or 2. Moreover, we can assume that X starts with the variable x and we
want to prove that it is xε1yε2xε3 ... Note that ε2 cannot be 2, since otherwise we could
have a shorter representation. Therefore, we can assume ε2 = 1. By the preceding
lemma, we have x2yx = xyx2, which allows us to assume ε1 = 1. Now, if X(x,y) has
length 3, then we end up with Case 5.

Since xyx2y = xy2 and xyxy = xyx3y = (xyx2)xy = (x2yx)xy = x2(yx2y) = x2y2,
we conclude that any representation of a polynomial having length 4 or more can be
shortened and this completes the proof of the lemma. �

L e m m a 3 . Let X(x,y) be a polynomial with a representation having length
bigger than 2 and starting and ending with the variable x in a transitive semigroup.
Then X(x,y) = xydegy(X)xdegx(X)−1.

P r o o f . First, we assume that the powers of the variables are less than 3. If
there are more than one instances of y in the representation, then we can eliminate
one of them as follows. If one of them has power 2, then we can eliminate y, using
the transitive identity. If, otherwise, we have both powers of any two y’s are 1, then
using the identity yzy = y2zy2, we replace the powers with 2’s and apply the previous
case. In these procedures the degree of x is not changed.

Therefore, we can reduce X(x,y) to a representation xε1yε2xε3 . Since ε2 has the
same parity as the degree of y in X(x,y), we write

X(x,y) = xε1ydegy(X)xε3 = xydegy(X)xdegx(X)−1. �
L e m m a 4 . Let X(x,y) be a polynomial with a representation having length

bigger than 1 and starting with the variable x and ending with y in a transitive semi-
group. Then X(x,y) = xdegx(X)ydegy(X).

The proof of this Lemma is similar to the previous one.
Transitive Hyperidentity in Semigroups. We consider the following

hyperidentity with functional rank 1:
X(X(x,y),X(y,z)) = X(x,z), (2)

which is called transitive hyperidentity.
T h e o r e m . The hyperidentity (2) is polynomially satisfied in the semi-

group Q(·) if and only if the semigroup Q(·) is transitive, i.e.
xy2z = xz.

P r o o f .
Necessity. If we take X(x,y) = xy we get the required transitive identity.
Sufficiency. Due to Lemma 4, it is enough to check the hyperidentity for the

polynomials in that lemma.
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Claim. It is sufficient to check the hyperidentity for the polynomials starting
with x.

Assume we proved the theorem for those polynomials. Let the polynomial
F(x,y) start with y. We want to prove F(F(x,y),F(y,z)) = F(x,z). Consider the
polynomial X(x,y) = F(y,x) which start with x and, thus, we have
X(X(z,y),X(y,x)) = X(z,x). Since X(X(z,y),X(y,x)) = F(X(y,x),X(z,y)) =
= F(F(x,y),F(y,z)) and X(z,x) = F(x,z), we get the required identity.

Now, we consider the Cases 1, 3 and 5 of Lemma 4 separately:
Case 1. X(x,y) = xn.

X(X(x,y),X(y,z)) = X(xn,yn) = xn2
= xn = X(x,z), since we have x4 = x2.

Case 3. X(x,y) = xnym.

X(X(x,y),X(y,z)) = X(xnym,ynzm) = (xnym)n(ynzm)m = (xn2
ymn)(ymnzm2

)
= xn(ymn)2zm = xnzm = X(x,z), using Lemma 4 and Case 1.
Case 5. X(x,y) = xyxn.
X(X(x,y),X(y,z))=X(xyxn,yzyn)= (xyxn)yzyn(xyxn)n = [(xyxn)y]z[yn(xyxn)n]

= xn+1y2zy2nxn(n+1) = xn+1zxn(n+1) = xzx(n+1)2−1 = xzxn = X(x,z),
using Lemma 4 and Case 1 again. �

Received 04.07.2016

R E F E R E N C E S

1. Movsisyan Yu.M. Introduction to the Theory of Algebras with Hyperidentities.
Yer.: YSU Press, 1986.

2. Movsisyan Yu.M. Hyperidentities and Hypervarieties in Algebras. Yer.: YSU Press,
1990.

3. Movsisyan Yu.M. Hyperidentities in Algebras and Varieties. // Russian Math. Surveys,
1998, v. 53, № 1, p. 57–108.

4. Movsisyan Yu.M. Hyperidentities and Hypervarieties. // Scientiae Mathematicae
Japonicae, 2001, v. 54, № 3, p. 595–640.

5. Artamonov V.A., Salij V.N., Skornjakov L.A., Shevrin L.N., Shulgeifer E.G.
General Algebra. V. 2. M.: Nauka, 1991 (in Russian).

6. Belousov V.D. Systems of Quasigroups with Generalized Identities. // Russian Math.
Surveys, 1965, v. 20, p. 73–143.

7. Denecke K., Koppits J. Hyperassociative Varieties of Semigroups. // Semigroup Forum,
1994, v. 49, p. 41–48.

8. Polak L. On Hyperassociativity. // Algebra Universalis, 1996, v. 36, p. 363–378.
9. Polak L. All Solid Varieties of Semigroups. // Journal of Algebra, 1999, v. 219,

p. 421–436.
10. Paseman G. On Two Problems from “Hyperidentities and Clones”, 2014,

arxiv.org/abs/1408.XXXX.
11. Movsisyan Yu.M., Hakobyan T.A. Associative Nontrivial Hyperidentities in

Semigroups. // J. Contemp. Math. Anal., 2011, v. 46, № 3, p. 121–130.
12. Movsisyan Yu.M., Hakobyan T.A. Distributive Hyperidentities in Semigroups. //

J. Contemp. Math. Anal., 2011, v. 46, № 6, p. 293–298.
13. Denecke K., Wismath Sh.L. Hyperidentities and Clones. Gordon and Breach Science

Publishers, 2000.
14. Koppitz J., Denecke K. M-Solid Varieties of Algebras. Springer, 2006.


